来自SPAM转基因小鼠的Tau表现出人类神经退行性疾病特有的强毒株特异性朊病毒样播种特性。

IF 3.9 4区 医学 Q2 NEUROSCIENCES
Ethan D Smith, Giavanna Paterno, Brach M Bell, Kimberly-Marie M Gorion, Stefan Prokop, Benoit I Giasson
{"title":"来自SPAM转基因小鼠的Tau表现出人类神经退行性疾病特有的强毒株特异性朊病毒样播种特性。","authors":"Ethan D Smith, Giavanna Paterno, Brach M Bell, Kimberly-Marie M Gorion, Stefan Prokop, Benoit I Giasson","doi":"10.1007/s12017-025-08850-4","DOIUrl":null,"url":null,"abstract":"<p><p>Tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), are characterized by the aberrant aggregation of tau protein into neurofibrillary tangles. Despite extensive studies on tau aggregation, the mechanisms of tau misfolding and propagation remain incompletely understood. In this study, we utilize the SPAM (S320F/P301S) tau transgenic mouse model, which expresses 0N4R human tau with two FTDP-17 mutations, to investigate the biochemical properties and seeding potential of misfolded tau from these mice. Sarkosyl extraction and ultracentrifugation were employed to isolate detergent-insoluble tau aggregates (SPAM-tau) from aged SPAM mice. These aggregates were then tested for their prion-type seeding activity in an established HEK293T cell model comparing the induced aggregation of wild-type and mutant forms of human and murine tau. Our results show that SPAM-tau exhibits distinct and vigorous prion-like seeding properties, inducing the aggregation of human and murine tau homologues with the formation of amyloidogenic (Thioflavin S-positive) inclusions. Importantly, SPAM-tau aggregates can facilitate the prion-type misfolding of wild-type and mutant forms of human and mouse tau. We demonstrated that these induced tau aggregates are able to be further transmitted in passaging studies. Furthermore, SPAM-tau preferentially templated 4R tau isoforms, sharing strain-like seeding properties with insoluble tau derived from the brains of individuals with progressive supranuclear palsy (PSP-tau). In summary, these findings enhance our understanding of tau aggregation and propagation, suggesting that SPAM-tau may serve as a valuable tool for studying tauopathies and evaluating potential therapeutic strategies aimed at halting tau misfolding and propagation.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"44"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tau from SPAM Transgenic Mice Exhibit Potent Strain-Specific Prion-Like Seeding Properties Characteristic of Human Neurodegenerative Diseases.\",\"authors\":\"Ethan D Smith, Giavanna Paterno, Brach M Bell, Kimberly-Marie M Gorion, Stefan Prokop, Benoit I Giasson\",\"doi\":\"10.1007/s12017-025-08850-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), are characterized by the aberrant aggregation of tau protein into neurofibrillary tangles. Despite extensive studies on tau aggregation, the mechanisms of tau misfolding and propagation remain incompletely understood. In this study, we utilize the SPAM (S320F/P301S) tau transgenic mouse model, which expresses 0N4R human tau with two FTDP-17 mutations, to investigate the biochemical properties and seeding potential of misfolded tau from these mice. Sarkosyl extraction and ultracentrifugation were employed to isolate detergent-insoluble tau aggregates (SPAM-tau) from aged SPAM mice. These aggregates were then tested for their prion-type seeding activity in an established HEK293T cell model comparing the induced aggregation of wild-type and mutant forms of human and murine tau. Our results show that SPAM-tau exhibits distinct and vigorous prion-like seeding properties, inducing the aggregation of human and murine tau homologues with the formation of amyloidogenic (Thioflavin S-positive) inclusions. Importantly, SPAM-tau aggregates can facilitate the prion-type misfolding of wild-type and mutant forms of human and mouse tau. We demonstrated that these induced tau aggregates are able to be further transmitted in passaging studies. Furthermore, SPAM-tau preferentially templated 4R tau isoforms, sharing strain-like seeding properties with insoluble tau derived from the brains of individuals with progressive supranuclear palsy (PSP-tau). In summary, these findings enhance our understanding of tau aggregation and propagation, suggesting that SPAM-tau may serve as a valuable tool for studying tauopathies and evaluating potential therapeutic strategies aimed at halting tau misfolding and propagation.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\"27 1\",\"pages\":\"44\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-025-08850-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08850-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

tau病变,包括与17号染色体相关的阿尔茨海默病和额颞叶痴呆伴帕金森病(FTDP-17),其特征是tau蛋白异常聚集成神经原纤维缠结。尽管对tau聚集进行了广泛的研究,但tau错误折叠和传播的机制仍然不完全清楚。在这项研究中,我们利用SPAM (S320F/P301S) tau转基因小鼠模型,表达带有两个FTDP-17突变的0N4R人tau,研究这些小鼠错误折叠tau的生化特性和种子潜力。采用萨科齐萃取和超离心分离老年SPAM小鼠中洗涤剂不溶性tau蛋白聚集体(SPAM-tau)。然后在建立的HEK293T细胞模型中测试这些聚集体的朊病毒型播种活性,比较野生型和突变型人和小鼠tau的诱导聚集。我们的研究结果表明,SPAM-tau表现出独特而有力的朊病毒样播种特性,诱导人类和小鼠tau同源物聚集,形成淀粉样蛋白(硫黄素s阳性)包涵体。重要的是,SPAM-tau聚集物可以促进野生型和突变型人类和小鼠tau蛋白的朊病毒型错误折叠。我们证明了这些诱导的tau聚集体能够在传代研究中进一步传播。此外,SPAM-tau优先模板4R tau亚型,与来自进进性核上性麻痹个体大脑的不溶性tau (PSP-tau)共享菌株样播种特性。总之,这些发现增强了我们对tau聚集和繁殖的理解,表明SPAM-tau可能作为研究tau病变和评估旨在阻止tau错误折叠和繁殖的潜在治疗策略的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tau from SPAM Transgenic Mice Exhibit Potent Strain-Specific Prion-Like Seeding Properties Characteristic of Human Neurodegenerative Diseases.

Tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), are characterized by the aberrant aggregation of tau protein into neurofibrillary tangles. Despite extensive studies on tau aggregation, the mechanisms of tau misfolding and propagation remain incompletely understood. In this study, we utilize the SPAM (S320F/P301S) tau transgenic mouse model, which expresses 0N4R human tau with two FTDP-17 mutations, to investigate the biochemical properties and seeding potential of misfolded tau from these mice. Sarkosyl extraction and ultracentrifugation were employed to isolate detergent-insoluble tau aggregates (SPAM-tau) from aged SPAM mice. These aggregates were then tested for their prion-type seeding activity in an established HEK293T cell model comparing the induced aggregation of wild-type and mutant forms of human and murine tau. Our results show that SPAM-tau exhibits distinct and vigorous prion-like seeding properties, inducing the aggregation of human and murine tau homologues with the formation of amyloidogenic (Thioflavin S-positive) inclusions. Importantly, SPAM-tau aggregates can facilitate the prion-type misfolding of wild-type and mutant forms of human and mouse tau. We demonstrated that these induced tau aggregates are able to be further transmitted in passaging studies. Furthermore, SPAM-tau preferentially templated 4R tau isoforms, sharing strain-like seeding properties with insoluble tau derived from the brains of individuals with progressive supranuclear palsy (PSP-tau). In summary, these findings enhance our understanding of tau aggregation and propagation, suggesting that SPAM-tau may serve as a valuable tool for studying tauopathies and evaluating potential therapeutic strategies aimed at halting tau misfolding and propagation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信