Hongbo Yuan, Kaizheng Liu, Melissa J J van Velthoven, Jyoti Kumari, Yuying Bao, Susana Rocha, Paul H J Kouwer
{"title":"纤维多异氰化物水凝胶用于3D细胞培养应用。","authors":"Hongbo Yuan, Kaizheng Liu, Melissa J J van Velthoven, Jyoti Kumari, Yuying Bao, Susana Rocha, Paul H J Kouwer","doi":"10.1038/s41596-025-01159-3","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) cell culture models based on hydrogels are rapidly evolving into a prominent tool for tissue engineering, mechanobiology, disease modeling and drug screening. While a vast variety of synthetic gels have emerged in recent years, they fail to penetrate the market substantially for two major reasons: they poorly mimic the extracellular matrix or they are difficult to use in gel formation and cell extraction. Mimicking the complexity of nature is challenging: the extracellular matrix plays a crucial role in cell development and function, which goes well beyond simple mechanical support. Recently, we introduced polyisocyanide (PIC) hydrogels for 3D cell culture applications. The fibrous architecture and associated (non)linear mechanical behavior closely mimic the physical properties of biogels such as collagen and fibrin. As fully synthetic materials, PIC gels benefit from high tailorability and reproducibility. Moreover, the thermoresponsive properties of PIC gels make them easy to handle in the lab; the gels form instantly at 37 °C and cells are easily extracted after cooling to 5 °C. The potential of PIC gels has been demonstrated in a quickly expanding library of papers discussing different cell lines, primary cells and organoids, as well as in vivo experiments. This manuscript provides protocols on how to handle PIC gels in the chemistry and cell biology laboratories. Material preparation requires 72 h. Cell encapsulation takes 1 h and the time for downstream analysis depends on the (commercial) methods used. The protocols described are suitable for researchers with expertise in cell culture and molecular biology.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibrous polyisocyanide hydrogels for 3D cell culture applications.\",\"authors\":\"Hongbo Yuan, Kaizheng Liu, Melissa J J van Velthoven, Jyoti Kumari, Yuying Bao, Susana Rocha, Paul H J Kouwer\",\"doi\":\"10.1038/s41596-025-01159-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) cell culture models based on hydrogels are rapidly evolving into a prominent tool for tissue engineering, mechanobiology, disease modeling and drug screening. While a vast variety of synthetic gels have emerged in recent years, they fail to penetrate the market substantially for two major reasons: they poorly mimic the extracellular matrix or they are difficult to use in gel formation and cell extraction. Mimicking the complexity of nature is challenging: the extracellular matrix plays a crucial role in cell development and function, which goes well beyond simple mechanical support. Recently, we introduced polyisocyanide (PIC) hydrogels for 3D cell culture applications. The fibrous architecture and associated (non)linear mechanical behavior closely mimic the physical properties of biogels such as collagen and fibrin. As fully synthetic materials, PIC gels benefit from high tailorability and reproducibility. Moreover, the thermoresponsive properties of PIC gels make them easy to handle in the lab; the gels form instantly at 37 °C and cells are easily extracted after cooling to 5 °C. The potential of PIC gels has been demonstrated in a quickly expanding library of papers discussing different cell lines, primary cells and organoids, as well as in vivo experiments. This manuscript provides protocols on how to handle PIC gels in the chemistry and cell biology laboratories. Material preparation requires 72 h. Cell encapsulation takes 1 h and the time for downstream analysis depends on the (commercial) methods used. The protocols described are suitable for researchers with expertise in cell culture and molecular biology.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01159-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01159-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fibrous polyisocyanide hydrogels for 3D cell culture applications.
Three-dimensional (3D) cell culture models based on hydrogels are rapidly evolving into a prominent tool for tissue engineering, mechanobiology, disease modeling and drug screening. While a vast variety of synthetic gels have emerged in recent years, they fail to penetrate the market substantially for two major reasons: they poorly mimic the extracellular matrix or they are difficult to use in gel formation and cell extraction. Mimicking the complexity of nature is challenging: the extracellular matrix plays a crucial role in cell development and function, which goes well beyond simple mechanical support. Recently, we introduced polyisocyanide (PIC) hydrogels for 3D cell culture applications. The fibrous architecture and associated (non)linear mechanical behavior closely mimic the physical properties of biogels such as collagen and fibrin. As fully synthetic materials, PIC gels benefit from high tailorability and reproducibility. Moreover, the thermoresponsive properties of PIC gels make them easy to handle in the lab; the gels form instantly at 37 °C and cells are easily extracted after cooling to 5 °C. The potential of PIC gels has been demonstrated in a quickly expanding library of papers discussing different cell lines, primary cells and organoids, as well as in vivo experiments. This manuscript provides protocols on how to handle PIC gels in the chemistry and cell biology laboratories. Material preparation requires 72 h. Cell encapsulation takes 1 h and the time for downstream analysis depends on the (commercial) methods used. The protocols described are suitable for researchers with expertise in cell culture and molecular biology.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.