MicroBayesAge:使用微阵列数据预测表观遗传年龄的最大似然方法。

IF 5.3 2区 医学 Q1 GERIATRICS & GERONTOLOGY
Nicole Nolan, Megan Mitchell, Lajoyce Mboning, Louis-S Bouchard, Matteo Pellegrini
{"title":"MicroBayesAge:使用微阵列数据预测表观遗传年龄的最大似然方法。","authors":"Nicole Nolan, Megan Mitchell, Lajoyce Mboning, Louis-S Bouchard, Matteo Pellegrini","doi":"10.1007/s11357-025-01716-4","DOIUrl":null,"url":null,"abstract":"<p><p>Certain epigenetic modifications, such as the methylation of CpG sites, can serve as biomarkers for chronological age. Previously, we introduced the BayesAge frameworks for accurate age prediction through the use of locally weighted scatterplot smoothing (LOWESS) to capture the nonlinear relationship between methylation or gene expression and age, and maximum likelihood estimation (MLE) for bulk bisulfite and RNA sequencing data. Here, we introduce MicroBayesAge, a maximum likelihood framework for age prediction using DNA microarray data that provides less biased age predictions compared to commonly used linear methods. Furthermore, MicroBayesAge enhances prediction accuracy relative to previous versions of BayesAge by subdividing input data into age-specific cohorts and employing a new two-stage process for training and testing. Additionally, we explored the performance of our model for sex-specific age prediction which revealed slight improvements in accuracy for male patients, while no changes were observed for female patients.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroBayesAge: a maximum likelihood approach to predict epigenetic age using microarray data.\",\"authors\":\"Nicole Nolan, Megan Mitchell, Lajoyce Mboning, Louis-S Bouchard, Matteo Pellegrini\",\"doi\":\"10.1007/s11357-025-01716-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Certain epigenetic modifications, such as the methylation of CpG sites, can serve as biomarkers for chronological age. Previously, we introduced the BayesAge frameworks for accurate age prediction through the use of locally weighted scatterplot smoothing (LOWESS) to capture the nonlinear relationship between methylation or gene expression and age, and maximum likelihood estimation (MLE) for bulk bisulfite and RNA sequencing data. Here, we introduce MicroBayesAge, a maximum likelihood framework for age prediction using DNA microarray data that provides less biased age predictions compared to commonly used linear methods. Furthermore, MicroBayesAge enhances prediction accuracy relative to previous versions of BayesAge by subdividing input data into age-specific cohorts and employing a new two-stage process for training and testing. Additionally, we explored the performance of our model for sex-specific age prediction which revealed slight improvements in accuracy for male patients, while no changes were observed for female patients.</p>\",\"PeriodicalId\":12730,\"journal\":{\"name\":\"GeroScience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GeroScience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11357-025-01716-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-025-01716-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

某些表观遗传修饰,如CpG位点的甲基化,可以作为实足年龄的生物标志物。之前,我们引入了BayesAge框架,通过使用局部加权散点图平滑(LOWESS)来捕获甲基化或基因表达与年龄之间的非线性关系,以及对大量亚硫酸氢盐和RNA测序数据的最大似然估计(MLE)来进行准确的年龄预测。在这里,我们介绍MicroBayesAge,这是一个使用DNA微阵列数据进行年龄预测的最大似然框架,与常用的线性方法相比,它提供的年龄预测偏差更小。此外,与之前版本的BayesAge相比,MicroBayesAge通过将输入数据细分为特定年龄的队列,并采用新的两阶段过程进行训练和测试,提高了预测精度。此外,我们还探讨了我们的模型在性别年龄预测方面的性能,结果显示,男性患者的准确率略有提高,而女性患者的准确率没有变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MicroBayesAge: a maximum likelihood approach to predict epigenetic age using microarray data.

Certain epigenetic modifications, such as the methylation of CpG sites, can serve as biomarkers for chronological age. Previously, we introduced the BayesAge frameworks for accurate age prediction through the use of locally weighted scatterplot smoothing (LOWESS) to capture the nonlinear relationship between methylation or gene expression and age, and maximum likelihood estimation (MLE) for bulk bisulfite and RNA sequencing data. Here, we introduce MicroBayesAge, a maximum likelihood framework for age prediction using DNA microarray data that provides less biased age predictions compared to commonly used linear methods. Furthermore, MicroBayesAge enhances prediction accuracy relative to previous versions of BayesAge by subdividing input data into age-specific cohorts and employing a new two-stage process for training and testing. Additionally, we explored the performance of our model for sex-specific age prediction which revealed slight improvements in accuracy for male patients, while no changes were observed for female patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GeroScience
GeroScience Medicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍: GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信