{"title":"水生BPI/ lbp:一种有前途的水产疾病控制抗菌肽资源。","authors":"Jingxian Sun, Huiqi Deng, Bingyu Ning, Yaoyao Zhan, Yaqing Chang","doi":"10.2174/0113892037364423250516032256","DOIUrl":null,"url":null,"abstract":"<p><p>Aquaculture is currently the fastest-growing food supply industry worldwide. Disease control has always been a core concern in the sector of aquaculture. In recent years, the frequency of aquaculture disease outbreaks has increased dramatically due to the continuously increased antibiotic resistance of pathogens. Therefore, it is imperative to find effective antibiotic alternatives for disease control in aquaculture. Bactericidal permeability increasing/lipopolysaccharide binding proteins (BPI/LBPs) are endogenous peptides ubiquitously expressed in aquatic animals that exhibit antimicrobial effects similar to antibiotics. This review presents an overview of current research on BPI/LBPs derived from aquatic animals, the predicted antimicrobial mechanisms of aquatic BPI/LBPs, and the application potential and prospects of aquatic BPI/LBPs as an antimicrobial peptide (AMP) resource. To sum up, the systematic research on aquatic BPI/LBPs may not only enrich AMP resources but also provide new clues for the development of eco-friendly disease control strategies in aquaculture.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aquatic BPI/LBPs: A Promising Antimicrobial Peptide Resource for Disease Control in Aquaculture.\",\"authors\":\"Jingxian Sun, Huiqi Deng, Bingyu Ning, Yaoyao Zhan, Yaqing Chang\",\"doi\":\"10.2174/0113892037364423250516032256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aquaculture is currently the fastest-growing food supply industry worldwide. Disease control has always been a core concern in the sector of aquaculture. In recent years, the frequency of aquaculture disease outbreaks has increased dramatically due to the continuously increased antibiotic resistance of pathogens. Therefore, it is imperative to find effective antibiotic alternatives for disease control in aquaculture. Bactericidal permeability increasing/lipopolysaccharide binding proteins (BPI/LBPs) are endogenous peptides ubiquitously expressed in aquatic animals that exhibit antimicrobial effects similar to antibiotics. This review presents an overview of current research on BPI/LBPs derived from aquatic animals, the predicted antimicrobial mechanisms of aquatic BPI/LBPs, and the application potential and prospects of aquatic BPI/LBPs as an antimicrobial peptide (AMP) resource. To sum up, the systematic research on aquatic BPI/LBPs may not only enrich AMP resources but also provide new clues for the development of eco-friendly disease control strategies in aquaculture.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892037364423250516032256\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892037364423250516032256","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Aquatic BPI/LBPs: A Promising Antimicrobial Peptide Resource for Disease Control in Aquaculture.
Aquaculture is currently the fastest-growing food supply industry worldwide. Disease control has always been a core concern in the sector of aquaculture. In recent years, the frequency of aquaculture disease outbreaks has increased dramatically due to the continuously increased antibiotic resistance of pathogens. Therefore, it is imperative to find effective antibiotic alternatives for disease control in aquaculture. Bactericidal permeability increasing/lipopolysaccharide binding proteins (BPI/LBPs) are endogenous peptides ubiquitously expressed in aquatic animals that exhibit antimicrobial effects similar to antibiotics. This review presents an overview of current research on BPI/LBPs derived from aquatic animals, the predicted antimicrobial mechanisms of aquatic BPI/LBPs, and the application potential and prospects of aquatic BPI/LBPs as an antimicrobial peptide (AMP) resource. To sum up, the systematic research on aquatic BPI/LBPs may not only enrich AMP resources but also provide new clues for the development of eco-friendly disease control strategies in aquaculture.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.