方案反应曲线估计器的非参数评估。

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-04-02 DOI:10.1093/biomtc/ujaf066
Cuong T Pham, Benjamin R Baer, Ashkan Ertefaie
{"title":"方案反应曲线估计器的非参数评估。","authors":"Cuong T Pham, Benjamin R Baer, Ashkan Ertefaie","doi":"10.1093/biomtc/ujaf066","DOIUrl":null,"url":null,"abstract":"<p><p>In the framework of dynamic marginal structural models, regimen-response curve is a function that describes the relation between the mean outcome and the parameters in the class of decision rules. The modeling choice of the regimen-response curve is crucial in constructing an optimal regime, as a misspecified model can lead to a biased estimate with questionable causal interpretability. However, the existing literature lacks methods to evaluate and compare different working models. To address this problem, we will leverage risk to assess the \"goodness-of-fit\" of an imposed working model. We consider the counterfactual risk as our target parameter and derive inverse probability weighting and canonical gradients to map it to the observed data. We provide asymptotic properties of the resulting risk estimators, considering both fixed and data-dependent target parameters. We will show that the inverse probability weighting estimator can be efficient and asymptotic linear when the weight functions are estimated using a sieve-based estimator. The proposed method is implemented on the LS1 study to estimate a regimen-response curve for patients with Parkinson's disease.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonparametric assessment of regimen response curve estimators.\",\"authors\":\"Cuong T Pham, Benjamin R Baer, Ashkan Ertefaie\",\"doi\":\"10.1093/biomtc/ujaf066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the framework of dynamic marginal structural models, regimen-response curve is a function that describes the relation between the mean outcome and the parameters in the class of decision rules. The modeling choice of the regimen-response curve is crucial in constructing an optimal regime, as a misspecified model can lead to a biased estimate with questionable causal interpretability. However, the existing literature lacks methods to evaluate and compare different working models. To address this problem, we will leverage risk to assess the \\\"goodness-of-fit\\\" of an imposed working model. We consider the counterfactual risk as our target parameter and derive inverse probability weighting and canonical gradients to map it to the observed data. We provide asymptotic properties of the resulting risk estimators, considering both fixed and data-dependent target parameters. We will show that the inverse probability weighting estimator can be efficient and asymptotic linear when the weight functions are estimated using a sieve-based estimator. The proposed method is implemented on the LS1 study to estimate a regimen-response curve for patients with Parkinson's disease.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf066\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf066","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在动态边际结构模型框架中,方案响应曲线是描述决策规则类中平均结果与参数之间关系的函数。方案-反应曲线的建模选择对于构建最优方案至关重要,因为错误指定的模型可能导致有偏差的估计,其因果可解释性存在问题。然而,现有文献缺乏评估和比较不同工作模型的方法。为了解决这个问题,我们将利用风险来评估一个被强加的工作模型的“合适度”。我们将反事实风险作为目标参数,并推导出逆概率加权和典型梯度来将其映射到观测数据。我们提供了所得到的风险估计量的渐近性质,考虑了固定的和数据相关的目标参数。我们将证明,当使用基于筛的估计器估计权函数时,逆概率加权估计器可以是有效的和渐近线性的。提出的方法在LS1研究中实施,用于估计帕金森病患者的方案-反应曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric assessment of regimen response curve estimators.

In the framework of dynamic marginal structural models, regimen-response curve is a function that describes the relation between the mean outcome and the parameters in the class of decision rules. The modeling choice of the regimen-response curve is crucial in constructing an optimal regime, as a misspecified model can lead to a biased estimate with questionable causal interpretability. However, the existing literature lacks methods to evaluate and compare different working models. To address this problem, we will leverage risk to assess the "goodness-of-fit" of an imposed working model. We consider the counterfactual risk as our target parameter and derive inverse probability weighting and canonical gradients to map it to the observed data. We provide asymptotic properties of the resulting risk estimators, considering both fixed and data-dependent target parameters. We will show that the inverse probability weighting estimator can be efficient and asymptotic linear when the weight functions are estimated using a sieve-based estimator. The proposed method is implemented on the LS1 study to estimate a regimen-response curve for patients with Parkinson's disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信