FePPc和Pz-FeTPr共轭有机聚合物催化氧还原反应的探索:来自大正则密度泛函理论的见解。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pengfei Yuan, Chong Li, Jianan Zhang, Fei Wang, Ying Zhao, Xuebo Chen
{"title":"FePPc和Pz-FeTPr共轭有机聚合物催化氧还原反应的探索:来自大正则密度泛函理论的见解。","authors":"Pengfei Yuan,&nbsp;Chong Li,&nbsp;Jianan Zhang,&nbsp;Fei Wang,&nbsp;Ying Zhao,&nbsp;Xuebo Chen","doi":"10.1002/advs.202504887","DOIUrl":null,"url":null,"abstract":"<p>This report examines the oxygen reduction reaction (ORR) catalyzed by iron-polyphthalocyanine (FePPc) and pyrazine-linked iron-coordinated tetrapyrrole (Pz-FeTPr) conjugated organic polymer (COP) catalysts, utilizing grand-canonical density functional theory (GC-DFT) and microkinetic (MK) simulations. The computed half-wave potential for AA stacking FePPc under alkaline conditions is in strong agreement with experimental findings. The ORR mechanism for AA stacking FePPc is characterized by the <sup>*</sup>O<sub>2</sub> mechanism (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <msup>\n <mo>→</mo>\n <mo>∗</mo>\n </msup>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <msup>\n <mo>→</mo>\n <mo>∗</mo>\n </msup>\n <mi>O</mi>\n <mi>O</mi>\n <mi>H</mi>\n <msup>\n <mo>→</mo>\n <mo>∗</mo>\n </msup>\n <mi>O</mi>\n <msup>\n <mo>→</mo>\n <mo>∗</mo>\n </msup>\n <mi>O</mi>\n <mi>H</mi>\n <mo>→</mo>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation>${{\\rm{O}}_2} \\to ^*{O_2} \\to ^*OOH \\to ^*O \\to ^*OH \\to {H_2}O$</annotation>\n </semantics></math>), with the Fe site serving as the active site. In the case of Pz-FeTPr, the ORR mechanism is similarly governed by the <sup>*</sup>O<sub>2</sub> mechanism, with the Fe site remaining the active site at lower potentials (less than 0.5 V<sub>RHE</sub>, vs reversible hydrogen electrode). However, at higher potentials (greater than 0.5 V<sub>RHE</sub>), the Fe site becomes obstructed by <span></span><math>\n <semantics>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mo>−</mo>\n </msubsup>\n <annotation>$O_2^ - $</annotation>\n </semantics></math>, resulting in a shift of the active site from the Fe site to a neighboring C site (designated as type A3). The corresponding ORR mechanism at the C site is denoted as <span></span><math>\n <semantics>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mo>−</mo>\n </msubsup>\n <annotation>$O_2^ - $</annotation>\n </semantics></math> mechanism (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n <mo>→</mo>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mo>−</mo>\n </msubsup>\n <msup>\n <mo>→</mo>\n <mo>∗</mo>\n </msup>\n <msubsup>\n <mi>O</mi>\n <mn>2</mn>\n <mo>−</mo>\n </msubsup>\n <mo>→</mo>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∗</mo>\n </msup>\n <mi>OOH</mi>\n </mrow>\n <mo>→</mo>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∗</mo>\n </msup>\n <mi>O</mi>\n </mrow>\n <mo>→</mo>\n <mrow>\n <msup>\n <mrow></mrow>\n <mo>∗</mo>\n </msup>\n <mi>OH</mi>\n </mrow>\n <mo>→</mo>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation>${{\\rm{O}}_2} \\to O_2^ - \\to ^*O_2^ - \\to {\\rm{^*OOH}} \\to {\\rm{^*O}} \\to {\\rm{^*OH}} \\to {{\\rm{H}}_2}{\\rm{O}}$</annotation>\n </semantics></math>). This mechanism yields a calculated half-wave potential that aligns well with experimental observations. The mechanisms identified for FePPc and Pz-FeTPr can be substantiated by the Raman signals detected in experimental studies.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 31","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202504887","citationCount":"0","resultStr":"{\"title\":\"Exploration of Oxygen Reduction Reaction Catalyzed by FePPc and Pz-FeTPr Conjugated Organic Polymer: Insights From Grand-Canonical Density Functional Theory\",\"authors\":\"Pengfei Yuan,&nbsp;Chong Li,&nbsp;Jianan Zhang,&nbsp;Fei Wang,&nbsp;Ying Zhao,&nbsp;Xuebo Chen\",\"doi\":\"10.1002/advs.202504887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This report examines the oxygen reduction reaction (ORR) catalyzed by iron-polyphthalocyanine (FePPc) and pyrazine-linked iron-coordinated tetrapyrrole (Pz-FeTPr) conjugated organic polymer (COP) catalysts, utilizing grand-canonical density functional theory (GC-DFT) and microkinetic (MK) simulations. The computed half-wave potential for AA stacking FePPc under alkaline conditions is in strong agreement with experimental findings. The ORR mechanism for AA stacking FePPc is characterized by the <sup>*</sup>O<sub>2</sub> mechanism (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <msup>\\n <mo>→</mo>\\n <mo>∗</mo>\\n </msup>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <msup>\\n <mo>→</mo>\\n <mo>∗</mo>\\n </msup>\\n <mi>O</mi>\\n <mi>O</mi>\\n <mi>H</mi>\\n <msup>\\n <mo>→</mo>\\n <mo>∗</mo>\\n </msup>\\n <mi>O</mi>\\n <msup>\\n <mo>→</mo>\\n <mo>∗</mo>\\n </msup>\\n <mi>O</mi>\\n <mi>H</mi>\\n <mo>→</mo>\\n <msub>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>O</mi>\\n </mrow>\\n <annotation>${{\\\\rm{O}}_2} \\\\to ^*{O_2} \\\\to ^*OOH \\\\to ^*O \\\\to ^*OH \\\\to {H_2}O$</annotation>\\n </semantics></math>), with the Fe site serving as the active site. In the case of Pz-FeTPr, the ORR mechanism is similarly governed by the <sup>*</sup>O<sub>2</sub> mechanism, with the Fe site remaining the active site at lower potentials (less than 0.5 V<sub>RHE</sub>, vs reversible hydrogen electrode). However, at higher potentials (greater than 0.5 V<sub>RHE</sub>), the Fe site becomes obstructed by <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>O</mi>\\n <mn>2</mn>\\n <mo>−</mo>\\n </msubsup>\\n <annotation>$O_2^ - $</annotation>\\n </semantics></math>, resulting in a shift of the active site from the Fe site to a neighboring C site (designated as type A3). The corresponding ORR mechanism at the C site is denoted as <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>O</mi>\\n <mn>2</mn>\\n <mo>−</mo>\\n </msubsup>\\n <annotation>$O_2^ - $</annotation>\\n </semantics></math> mechanism (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>→</mo>\\n <msubsup>\\n <mi>O</mi>\\n <mn>2</mn>\\n <mo>−</mo>\\n </msubsup>\\n <msup>\\n <mo>→</mo>\\n <mo>∗</mo>\\n </msup>\\n <msubsup>\\n <mi>O</mi>\\n <mn>2</mn>\\n <mo>−</mo>\\n </msubsup>\\n <mo>→</mo>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mo>∗</mo>\\n </msup>\\n <mi>OOH</mi>\\n </mrow>\\n <mo>→</mo>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mo>∗</mo>\\n </msup>\\n <mi>O</mi>\\n </mrow>\\n <mo>→</mo>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mo>∗</mo>\\n </msup>\\n <mi>OH</mi>\\n </mrow>\\n <mo>→</mo>\\n <msub>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>O</mi>\\n </mrow>\\n <annotation>${{\\\\rm{O}}_2} \\\\to O_2^ - \\\\to ^*O_2^ - \\\\to {\\\\rm{^*OOH}} \\\\to {\\\\rm{^*O}} \\\\to {\\\\rm{^*OH}} \\\\to {{\\\\rm{H}}_2}{\\\\rm{O}}$</annotation>\\n </semantics></math>). This mechanism yields a calculated half-wave potential that aligns well with experimental observations. The mechanisms identified for FePPc and Pz-FeTPr can be substantiated by the Raman signals detected in experimental studies.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 31\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202504887\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504887\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504887","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了铁-聚酞菁(FePPc)和吡嗪-铁-配位四吡咯(Pz-FeTPr)共轭有机聚合物(COP)催化剂催化的氧还原反应(ORR),利用大规范密度泛函理论(GC-DFT)和微动力学(MK)模拟。碱性条件下AA层叠FePPc的半波电位计算结果与实验结果吻合较好。AA堆叠FePPc的ORR机制为*O2机制(O2→∗O2→∗OO OH→∗O→∗OH→h2 O$ {{\rm{O}}_2 \到^*{O_2} \到^*OOH \到^*O \到^*OH \到{H_2}O$),其中Fe位点为活性位点。在Pz-FeTPr的情况下,ORR机制类似地由*O2机制控制,Fe位点在较低电位下保持活性位点(小于0.5 VRHE,相对可逆氢电极)。然而,在较高电位下(大于0.5 VRHE), Fe位点被o2 - $O_2^ - $阻塞,导致活性位点从Fe位点转移到邻近的C位点(称为A3型)。相应的奥尔机制与O 2 - C网站表示美元提取成分^ - $机制(O 2→O 2 -→O 2 -→∗∗哦→→阿∗∗哦→H 2 O $ {{\ rm {O}} _2} \来提取成分^ - \ ^ *成分^ - \ {\ rm{^ *哦}}\ {\ rm {^ * O}} \ {\ rm{^ *哦}}\ {{\ rm {H}} _2} {\ rm {O}} $)。这种机制产生的计算半波电位与实验观察结果很好地吻合。FePPc和Pz-FeTPr的机制可以通过实验检测到的拉曼信号得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploration of Oxygen Reduction Reaction Catalyzed by FePPc and Pz-FeTPr Conjugated Organic Polymer: Insights From Grand-Canonical Density Functional Theory

Exploration of Oxygen Reduction Reaction Catalyzed by FePPc and Pz-FeTPr Conjugated Organic Polymer: Insights From Grand-Canonical Density Functional Theory

This report examines the oxygen reduction reaction (ORR) catalyzed by iron-polyphthalocyanine (FePPc) and pyrazine-linked iron-coordinated tetrapyrrole (Pz-FeTPr) conjugated organic polymer (COP) catalysts, utilizing grand-canonical density functional theory (GC-DFT) and microkinetic (MK) simulations. The computed half-wave potential for AA stacking FePPc under alkaline conditions is in strong agreement with experimental findings. The ORR mechanism for AA stacking FePPc is characterized by the *O2 mechanism ( O 2 O 2 O O H O O H H 2 O ${{\rm{O}}_2} \to ^*{O_2} \to ^*OOH \to ^*O \to ^*OH \to {H_2}O$ ), with the Fe site serving as the active site. In the case of Pz-FeTPr, the ORR mechanism is similarly governed by the *O2 mechanism, with the Fe site remaining the active site at lower potentials (less than 0.5 VRHE, vs reversible hydrogen electrode). However, at higher potentials (greater than 0.5 VRHE), the Fe site becomes obstructed by O 2 $O_2^ - $ , resulting in a shift of the active site from the Fe site to a neighboring C site (designated as type A3). The corresponding ORR mechanism at the C site is denoted as O 2 $O_2^ - $ mechanism ( O 2 O 2 O 2 OOH O OH H 2 O ${{\rm{O}}_2} \to O_2^ - \to ^*O_2^ - \to {\rm{^*OOH}} \to {\rm{^*O}} \to {\rm{^*OH}} \to {{\rm{H}}_2}{\rm{O}}$ ). This mechanism yields a calculated half-wave potential that aligns well with experimental observations. The mechanisms identified for FePPc and Pz-FeTPr can be substantiated by the Raman signals detected in experimental studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信