Yao Yang , Jiahao Zhang , Zhibing Chang , Mei Liu , Mengzhen Xu , Xinyi Zhou , Xudong Fu
{"title":"量化关键因素对金贻贝eDNA脱落率和衰变率的影响","authors":"Yao Yang , Jiahao Zhang , Zhibing Chang , Mei Liu , Mengzhen Xu , Xinyi Zhou , Xudong Fu","doi":"10.1016/j.jenvman.2025.126054","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental DNA (eDNA) quantification is an emerging technique for detecting invasive mussel in aquatic environments. Understanding mechanism of eDNA shedding and decaying under different environmental conditions are critical for obtaining reliable spatial and temporal distribution of the target species. As a representative invasive species in freshwater ecosystems, the golden mussel (<em>Limnoperna fortunei</em>) has caused significant economic and ecological damage worldwide through its invasion and biofouling. In this study, the effects of key eco-environmental factors including biomass, water temperature, and pH that influence eDNA shedding and decay of golden mussel were revealed through field investigations of grand water diversion project and laboratory experiments. The results revealed significant positive correlations between both biomass and water temperature with eDNA shedding rates. Additionally, high water temperatures and low pH conditions were found to accelerate the decay of mussel eDNA. The findings of this study indicate that the effects of these controlling factors should be considered during the collection and quantitative analysis processes of water samples to provide reliable base for invasion detection using eDNA technology.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"388 ","pages":"Article 126054"},"PeriodicalIF":8.4000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the effect of key factors on the shedding and decay rates of eDNA from the golden mussel\",\"authors\":\"Yao Yang , Jiahao Zhang , Zhibing Chang , Mei Liu , Mengzhen Xu , Xinyi Zhou , Xudong Fu\",\"doi\":\"10.1016/j.jenvman.2025.126054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Environmental DNA (eDNA) quantification is an emerging technique for detecting invasive mussel in aquatic environments. Understanding mechanism of eDNA shedding and decaying under different environmental conditions are critical for obtaining reliable spatial and temporal distribution of the target species. As a representative invasive species in freshwater ecosystems, the golden mussel (<em>Limnoperna fortunei</em>) has caused significant economic and ecological damage worldwide through its invasion and biofouling. In this study, the effects of key eco-environmental factors including biomass, water temperature, and pH that influence eDNA shedding and decay of golden mussel were revealed through field investigations of grand water diversion project and laboratory experiments. The results revealed significant positive correlations between both biomass and water temperature with eDNA shedding rates. Additionally, high water temperatures and low pH conditions were found to accelerate the decay of mussel eDNA. The findings of this study indicate that the effects of these controlling factors should be considered during the collection and quantitative analysis processes of water samples to provide reliable base for invasion detection using eDNA technology.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"388 \",\"pages\":\"Article 126054\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479725020304\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725020304","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantifying the effect of key factors on the shedding and decay rates of eDNA from the golden mussel
Environmental DNA (eDNA) quantification is an emerging technique for detecting invasive mussel in aquatic environments. Understanding mechanism of eDNA shedding and decaying under different environmental conditions are critical for obtaining reliable spatial and temporal distribution of the target species. As a representative invasive species in freshwater ecosystems, the golden mussel (Limnoperna fortunei) has caused significant economic and ecological damage worldwide through its invasion and biofouling. In this study, the effects of key eco-environmental factors including biomass, water temperature, and pH that influence eDNA shedding and decay of golden mussel were revealed through field investigations of grand water diversion project and laboratory experiments. The results revealed significant positive correlations between both biomass and water temperature with eDNA shedding rates. Additionally, high water temperatures and low pH conditions were found to accelerate the decay of mussel eDNA. The findings of this study indicate that the effects of these controlling factors should be considered during the collection and quantitative analysis processes of water samples to provide reliable base for invasion detection using eDNA technology.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.