{"title":"添加碳量子点增强微生物胞外电子转移加速模拟湿地中苯胺的降解","authors":"Xingyuan Song, Ruijia Yang, Junwu Yi, Ziyang Zhang, Haohao Mao, Qilin Yu, Zhiqiang Zhao, Yaobin Zhang","doi":"10.1016/j.jenvman.2025.126046","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial extracellular respiration is relatively weak in natural water systems because of the low electroactivity of environmental media, which limits the production of extracellular respiration-based reactive oxygen species (ROS) and the removal of pollutant. In this study, carbon quantum dots (CDs) were added to a simulated wetland to enhance extracellular respiration and accelerate the microbial oxidation of aniline under intermittent aeration conditions. The results indicated that CDs promoted extracellular electron transfer to increase the production of Fe<sup>2+</sup> and ROS, and led to a 23.5 % higher aniline removal rate than that of the control group without CD addition. Multiple lines of evidence indicated that CDs bind to microorganisms in wetlands to induce the polarization of respiratory enzymes, thereby enhancing microbial electroactivity and the activity of respiratory chain enzymes. In addition, CDs enhanced proton efflux to form a higher membrane potential for adenosine triphosphate (ATP) production, which facilitated ROS generation. This study demonstrated a simple and efficient approach to enhance microbial extracellular electron transfer for ROS production and remediation of polluted wetlands.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"388 ","pages":"Article 126046"},"PeriodicalIF":8.4000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adding carbon quantum dots to enhance microbial extracellular electron transfer for accelerating aniline degradation in simulated wetlands\",\"authors\":\"Xingyuan Song, Ruijia Yang, Junwu Yi, Ziyang Zhang, Haohao Mao, Qilin Yu, Zhiqiang Zhao, Yaobin Zhang\",\"doi\":\"10.1016/j.jenvman.2025.126046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microbial extracellular respiration is relatively weak in natural water systems because of the low electroactivity of environmental media, which limits the production of extracellular respiration-based reactive oxygen species (ROS) and the removal of pollutant. In this study, carbon quantum dots (CDs) were added to a simulated wetland to enhance extracellular respiration and accelerate the microbial oxidation of aniline under intermittent aeration conditions. The results indicated that CDs promoted extracellular electron transfer to increase the production of Fe<sup>2+</sup> and ROS, and led to a 23.5 % higher aniline removal rate than that of the control group without CD addition. Multiple lines of evidence indicated that CDs bind to microorganisms in wetlands to induce the polarization of respiratory enzymes, thereby enhancing microbial electroactivity and the activity of respiratory chain enzymes. In addition, CDs enhanced proton efflux to form a higher membrane potential for adenosine triphosphate (ATP) production, which facilitated ROS generation. This study demonstrated a simple and efficient approach to enhance microbial extracellular electron transfer for ROS production and remediation of polluted wetlands.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"388 \",\"pages\":\"Article 126046\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301479725020225\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725020225","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Adding carbon quantum dots to enhance microbial extracellular electron transfer for accelerating aniline degradation in simulated wetlands
Microbial extracellular respiration is relatively weak in natural water systems because of the low electroactivity of environmental media, which limits the production of extracellular respiration-based reactive oxygen species (ROS) and the removal of pollutant. In this study, carbon quantum dots (CDs) were added to a simulated wetland to enhance extracellular respiration and accelerate the microbial oxidation of aniline under intermittent aeration conditions. The results indicated that CDs promoted extracellular electron transfer to increase the production of Fe2+ and ROS, and led to a 23.5 % higher aniline removal rate than that of the control group without CD addition. Multiple lines of evidence indicated that CDs bind to microorganisms in wetlands to induce the polarization of respiratory enzymes, thereby enhancing microbial electroactivity and the activity of respiratory chain enzymes. In addition, CDs enhanced proton efflux to form a higher membrane potential for adenosine triphosphate (ATP) production, which facilitated ROS generation. This study demonstrated a simple and efficient approach to enhance microbial extracellular electron transfer for ROS production and remediation of polluted wetlands.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.