{"title":"非离子表面活性剂联合超声辅助提取金针菇茎废弃物中生物活性多酚的优化研究","authors":"Huimin Huo , Haiying Bao , Hao Yin","doi":"10.1016/j.ultsonch.2025.107408","DOIUrl":null,"url":null,"abstract":"<div><div>The process of cultivating edible and medicinal mushrooms results in considerable biomass waste, which can be a rich source of bioactive compounds. This research aimed at optimizing the yield of polyphenols and improving the antioxidant potential of extracts derived from the stem waste of <em>Flammulina velutipes</em> (FVS). Notably, this investigation is the first to harness FVS as a raw material for the extraction of total polyphenols by nonionic surfactant-integrated ultrasound-assisted extraction (UAE) techniques. Through the screening of nonionic surfactants, it was determined that Genapol X-080 exhibited the highest efficacy in extracting phenolic constituents. When comparing the total polyphenol yields obtained from FVS via various extraction methods, it was found that UAE yielded significantly more polyphenols compared to both stirring-assisted and heating extraction methods. Furthermore, the sustainability analysis highlighted that the combination of nonionic surfactants with UAE presents a more environmentally friendly option, achieving a score of 0.73 in the Analytical Greenness Calculator. To optimize the extraction parameters, response surface methodology was utilized. The ideal conditions determined were: an ultrasound time of 90 min, a temperature of 44 °C, a 75 % ethanol concentration, and ultrasonic power set at 160 W. Comparative assessments revealed that the refined UAE method enhanced the extraction rate by 27.35 %, while simultaneously decreasing energy use by 66.67 %. Moreover, evaluations of the antioxidant levels in the samples showed that the optimized FVS extracts consistently demonstrated superior antioxidant activities across all evaluated free radical scavenging tests (DPPH, ABTS, FRAP, and hydroxyl radicals). These results provide significant insights into the effective utilization of mushroom stem waste and advance efforts in the valorization of biomass byproducts from the mushroom industry.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"119 ","pages":"Article 107408"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of bioactive polyphenols recovery from Flammulina velutipes stem waste using nonionic surfactant-integrated ultrasound-assisted extraction\",\"authors\":\"Huimin Huo , Haiying Bao , Hao Yin\",\"doi\":\"10.1016/j.ultsonch.2025.107408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The process of cultivating edible and medicinal mushrooms results in considerable biomass waste, which can be a rich source of bioactive compounds. This research aimed at optimizing the yield of polyphenols and improving the antioxidant potential of extracts derived from the stem waste of <em>Flammulina velutipes</em> (FVS). Notably, this investigation is the first to harness FVS as a raw material for the extraction of total polyphenols by nonionic surfactant-integrated ultrasound-assisted extraction (UAE) techniques. Through the screening of nonionic surfactants, it was determined that Genapol X-080 exhibited the highest efficacy in extracting phenolic constituents. When comparing the total polyphenol yields obtained from FVS via various extraction methods, it was found that UAE yielded significantly more polyphenols compared to both stirring-assisted and heating extraction methods. Furthermore, the sustainability analysis highlighted that the combination of nonionic surfactants with UAE presents a more environmentally friendly option, achieving a score of 0.73 in the Analytical Greenness Calculator. To optimize the extraction parameters, response surface methodology was utilized. The ideal conditions determined were: an ultrasound time of 90 min, a temperature of 44 °C, a 75 % ethanol concentration, and ultrasonic power set at 160 W. Comparative assessments revealed that the refined UAE method enhanced the extraction rate by 27.35 %, while simultaneously decreasing energy use by 66.67 %. Moreover, evaluations of the antioxidant levels in the samples showed that the optimized FVS extracts consistently demonstrated superior antioxidant activities across all evaluated free radical scavenging tests (DPPH, ABTS, FRAP, and hydroxyl radicals). These results provide significant insights into the effective utilization of mushroom stem waste and advance efforts in the valorization of biomass byproducts from the mushroom industry.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"119 \",\"pages\":\"Article 107408\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725001877\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001877","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Optimization of bioactive polyphenols recovery from Flammulina velutipes stem waste using nonionic surfactant-integrated ultrasound-assisted extraction
The process of cultivating edible and medicinal mushrooms results in considerable biomass waste, which can be a rich source of bioactive compounds. This research aimed at optimizing the yield of polyphenols and improving the antioxidant potential of extracts derived from the stem waste of Flammulina velutipes (FVS). Notably, this investigation is the first to harness FVS as a raw material for the extraction of total polyphenols by nonionic surfactant-integrated ultrasound-assisted extraction (UAE) techniques. Through the screening of nonionic surfactants, it was determined that Genapol X-080 exhibited the highest efficacy in extracting phenolic constituents. When comparing the total polyphenol yields obtained from FVS via various extraction methods, it was found that UAE yielded significantly more polyphenols compared to both stirring-assisted and heating extraction methods. Furthermore, the sustainability analysis highlighted that the combination of nonionic surfactants with UAE presents a more environmentally friendly option, achieving a score of 0.73 in the Analytical Greenness Calculator. To optimize the extraction parameters, response surface methodology was utilized. The ideal conditions determined were: an ultrasound time of 90 min, a temperature of 44 °C, a 75 % ethanol concentration, and ultrasonic power set at 160 W. Comparative assessments revealed that the refined UAE method enhanced the extraction rate by 27.35 %, while simultaneously decreasing energy use by 66.67 %. Moreover, evaluations of the antioxidant levels in the samples showed that the optimized FVS extracts consistently demonstrated superior antioxidant activities across all evaluated free radical scavenging tests (DPPH, ABTS, FRAP, and hydroxyl radicals). These results provide significant insights into the effective utilization of mushroom stem waste and advance efforts in the valorization of biomass byproducts from the mushroom industry.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.