Huaming Li , Chaochao Bao , Xiaojuan Wang , Yanting Tian , Lin Feng , Ying Zhang , Yongli Sun , Mo Li
{"title":"液态汞在压力下的热容","authors":"Huaming Li , Chaochao Bao , Xiaojuan Wang , Yanting Tian , Lin Feng , Ying Zhang , Yongli Sun , Mo Li","doi":"10.1016/j.physb.2025.417461","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the heat capacity of liquid mercury under pressure using experimental data, a linear isothermal regularity equation of state, and a power law equation of state. A key finding is the identification of a new linear isothermal regularity. The derived density, isobaric thermal expansion coefficient, and isothermal bulk modulus from the linear isothermal regularity equation of state show excellent agreement with experimental data. Analytical expressions for isobaric (<span><math><mrow><msub><mi>C</mi><mrow><mi>p</mi><mi>m</mi></mrow></msub></mrow></math></span>) and isochoric (<span><math><mrow><msub><mi>C</mi><mrow><mi>v</mi><mi>m</mi></mrow></msub></mrow></math></span>) molar heat capacities reveal extreme values specifically, <span><math><mrow><msub><mi>C</mi><mrow><mi>v</mi><mi>m</mi></mrow></msub></mrow></math></span> shows a maximum at higher temperatures, while <span><math><mrow><msub><mi>C</mi><mrow><mi>p</mi><mi>m</mi></mrow></msub></mrow></math></span> exhibits both a minimum and a maximum within a narrow temperature range. These results highlight the complex thermodynamic behavior of liquid mercury and provide insights into heat capacity anomalies in liquid metals, emphasizing the need for further research into microscopic origins under high-pressure conditions.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"714 ","pages":"Article 417461"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On heat capacity of liquid mercury under pressure\",\"authors\":\"Huaming Li , Chaochao Bao , Xiaojuan Wang , Yanting Tian , Lin Feng , Ying Zhang , Yongli Sun , Mo Li\",\"doi\":\"10.1016/j.physb.2025.417461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the heat capacity of liquid mercury under pressure using experimental data, a linear isothermal regularity equation of state, and a power law equation of state. A key finding is the identification of a new linear isothermal regularity. The derived density, isobaric thermal expansion coefficient, and isothermal bulk modulus from the linear isothermal regularity equation of state show excellent agreement with experimental data. Analytical expressions for isobaric (<span><math><mrow><msub><mi>C</mi><mrow><mi>p</mi><mi>m</mi></mrow></msub></mrow></math></span>) and isochoric (<span><math><mrow><msub><mi>C</mi><mrow><mi>v</mi><mi>m</mi></mrow></msub></mrow></math></span>) molar heat capacities reveal extreme values specifically, <span><math><mrow><msub><mi>C</mi><mrow><mi>v</mi><mi>m</mi></mrow></msub></mrow></math></span> shows a maximum at higher temperatures, while <span><math><mrow><msub><mi>C</mi><mrow><mi>p</mi><mi>m</mi></mrow></msub></mrow></math></span> exhibits both a minimum and a maximum within a narrow temperature range. These results highlight the complex thermodynamic behavior of liquid mercury and provide insights into heat capacity anomalies in liquid metals, emphasizing the need for further research into microscopic origins under high-pressure conditions.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"714 \",\"pages\":\"Article 417461\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625005782\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625005782","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
This study investigates the heat capacity of liquid mercury under pressure using experimental data, a linear isothermal regularity equation of state, and a power law equation of state. A key finding is the identification of a new linear isothermal regularity. The derived density, isobaric thermal expansion coefficient, and isothermal bulk modulus from the linear isothermal regularity equation of state show excellent agreement with experimental data. Analytical expressions for isobaric () and isochoric () molar heat capacities reveal extreme values specifically, shows a maximum at higher temperatures, while exhibits both a minimum and a maximum within a narrow temperature range. These results highlight the complex thermodynamic behavior of liquid mercury and provide insights into heat capacity anomalies in liquid metals, emphasizing the need for further research into microscopic origins under high-pressure conditions.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces