Weihua Zhou;Mohammad Hasan Ravanji;Nabil Mohammed;Behrooz Bahrani
{"title":"控制环相互作用对弱并网跟随逆变器最大功率传输能力的影响","authors":"Weihua Zhou;Mohammad Hasan Ravanji;Nabil Mohammed;Behrooz Bahrani","doi":"10.35833/MPCE.2024.000136","DOIUrl":null,"url":null,"abstract":"The maximum power transfer capability (MPTC) of phase-locked loop (PLL)-based grid-following inverters is often limited under weak-grid conditions due to passivity violations caused by operating-point-dependent control loops. This paper reveals and compares the mechanisms of these violations across different control strategies. Using admittance decomposition and full-order state-space models for eigenvalue analysis, MPTC limitations from control loops and their interactions are identified. The small-signal stabilities of different control loops are compared under varying grid strength, and both static and dynamic MPTCs for each control mode are examined. This paper also explores how control loop interactions impact the MPTC, offering insights for tuning control loops to enhance stability in weak grids. For example, fast power control improves the MPTC when paired with a slow PLL, while power control has minimal effect when the PLL is sufficiently fast. The findings are validated through frequency scanning, eigenvalue analysis, simulations, and experiments.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 3","pages":"1078-1089"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778170","citationCount":"0","resultStr":"{\"title\":\"Effects of Control Loop Interactions on Maximum Power Transfer Capability of Weak-Grid-Tied Grid-Following Inverters\",\"authors\":\"Weihua Zhou;Mohammad Hasan Ravanji;Nabil Mohammed;Behrooz Bahrani\",\"doi\":\"10.35833/MPCE.2024.000136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum power transfer capability (MPTC) of phase-locked loop (PLL)-based grid-following inverters is often limited under weak-grid conditions due to passivity violations caused by operating-point-dependent control loops. This paper reveals and compares the mechanisms of these violations across different control strategies. Using admittance decomposition and full-order state-space models for eigenvalue analysis, MPTC limitations from control loops and their interactions are identified. The small-signal stabilities of different control loops are compared under varying grid strength, and both static and dynamic MPTCs for each control mode are examined. This paper also explores how control loop interactions impact the MPTC, offering insights for tuning control loops to enhance stability in weak grids. For example, fast power control improves the MPTC when paired with a slow PLL, while power control has minimal effect when the PLL is sufficiently fast. The findings are validated through frequency scanning, eigenvalue analysis, simulations, and experiments.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 3\",\"pages\":\"1078-1089\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778170\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10778170/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10778170/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effects of Control Loop Interactions on Maximum Power Transfer Capability of Weak-Grid-Tied Grid-Following Inverters
The maximum power transfer capability (MPTC) of phase-locked loop (PLL)-based grid-following inverters is often limited under weak-grid conditions due to passivity violations caused by operating-point-dependent control loops. This paper reveals and compares the mechanisms of these violations across different control strategies. Using admittance decomposition and full-order state-space models for eigenvalue analysis, MPTC limitations from control loops and their interactions are identified. The small-signal stabilities of different control loops are compared under varying grid strength, and both static and dynamic MPTCs for each control mode are examined. This paper also explores how control loop interactions impact the MPTC, offering insights for tuning control loops to enhance stability in weak grids. For example, fast power control improves the MPTC when paired with a slow PLL, while power control has minimal effect when the PLL is sufficiently fast. The findings are validated through frequency scanning, eigenvalue analysis, simulations, and experiments.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.