Yanhui Zhang , Jie Yang , Xiaoyu Zhang , Rui Xu , Minsu Liu , Aoran Fan , Yingjun Liu , Jianli Wang , Xing Zhang
{"title":"高取向碳纤维复合材料各向异性热物理性能的研究:从一维到三维","authors":"Yanhui Zhang , Jie Yang , Xiaoyu Zhang , Rui Xu , Minsu Liu , Aoran Fan , Yingjun Liu , Jianli Wang , Xing Zhang","doi":"10.1016/j.carbon.2025.120477","DOIUrl":null,"url":null,"abstract":"<div><div>Highly oriented carbon fiber composites exhibit three-dimensional anisotropic thermophysical properties, making them candidates for thermal management applications. In this study, the thermal properties of highly oriented carbon fiber/epoxy resin (CF/ER) composites and their components were systematically investigated. The T-type probe method was employed to measure the pitch CF, while the 2ω method and the laser-spot-periodic-heating method were combined to characterize the E51-ER film and the composites. The impact of local fiber bending on heat transfer in the composites was also analyzed through finite element simulations. The results show that these composites exhibit high thermal conductivity along the fiber orientation with an anisotropy ratio of about 294. At different temperatures, the thermal conductivity along the fiber orientation is lower than the value predicted by the parallel model, while the conductivity in the other two directions is significantly higher than that predicted by the series model. Simulation results suggest that the bending of certain pitch CF can be a key factor contributing to this discrepancy.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"243 ","pages":"Article 120477"},"PeriodicalIF":10.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of anisotropic thermophysical properties of highly oriented carbon fiber composites: From one to three dimensions\",\"authors\":\"Yanhui Zhang , Jie Yang , Xiaoyu Zhang , Rui Xu , Minsu Liu , Aoran Fan , Yingjun Liu , Jianli Wang , Xing Zhang\",\"doi\":\"10.1016/j.carbon.2025.120477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Highly oriented carbon fiber composites exhibit three-dimensional anisotropic thermophysical properties, making them candidates for thermal management applications. In this study, the thermal properties of highly oriented carbon fiber/epoxy resin (CF/ER) composites and their components were systematically investigated. The T-type probe method was employed to measure the pitch CF, while the 2ω method and the laser-spot-periodic-heating method were combined to characterize the E51-ER film and the composites. The impact of local fiber bending on heat transfer in the composites was also analyzed through finite element simulations. The results show that these composites exhibit high thermal conductivity along the fiber orientation with an anisotropy ratio of about 294. At different temperatures, the thermal conductivity along the fiber orientation is lower than the value predicted by the parallel model, while the conductivity in the other two directions is significantly higher than that predicted by the series model. Simulation results suggest that the bending of certain pitch CF can be a key factor contributing to this discrepancy.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"243 \",\"pages\":\"Article 120477\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622325004932\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325004932","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Investigation of anisotropic thermophysical properties of highly oriented carbon fiber composites: From one to three dimensions
Highly oriented carbon fiber composites exhibit three-dimensional anisotropic thermophysical properties, making them candidates for thermal management applications. In this study, the thermal properties of highly oriented carbon fiber/epoxy resin (CF/ER) composites and their components were systematically investigated. The T-type probe method was employed to measure the pitch CF, while the 2ω method and the laser-spot-periodic-heating method were combined to characterize the E51-ER film and the composites. The impact of local fiber bending on heat transfer in the composites was also analyzed through finite element simulations. The results show that these composites exhibit high thermal conductivity along the fiber orientation with an anisotropy ratio of about 294. At different temperatures, the thermal conductivity along the fiber orientation is lower than the value predicted by the parallel model, while the conductivity in the other two directions is significantly higher than that predicted by the series model. Simulation results suggest that the bending of certain pitch CF can be a key factor contributing to this discrepancy.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.