Amanda Camacho Novaes de Oliveira, Daniel Ratton Figueiredo
{"title":"利用网络梯度优化受限玻尔兹曼机的连通性","authors":"Amanda Camacho Novaes de Oliveira, Daniel Ratton Figueiredo","doi":"10.1016/j.neunet.2025.107486","DOIUrl":null,"url":null,"abstract":"<div><div>Leveraging sparse networks to connect successive layers in deep neural networks has recently been shown to provide benefits to large-scale state-of-the-art models. However, network connectivity also plays a significant role in the learning performance of shallow networks, such as the classic Restricted Boltzmann Machine (RBM). Efficiently finding sparse connectivity patterns that improve the learning performance of shallow networks is a fundamental problem. While recent principled approaches explicitly include network connections as model parameters that must be optimized, they often rely on explicit penalization or network sparsity as a hyperparameter. This work presents the Network Connectivity Gradients (NCG), an optimization method to find optimal connectivity patterns for RBMs. NCG leverages the idea of network gradients: given a specific connection pattern, it determines the gradient of every possible connection and uses the gradient to drive a continuous connection strength parameter that in turn is used to determine the connection pattern. Thus, learning RBM parameters and learning network connections is truly jointly performed, albeit with different learning rates, and without changes to the model’s classic energy-based objective function. The proposed method is applied to the MNIST and other data sets showing that better RBM models are found for the benchmark tasks of sample generation and classification. Results also show that NCG is robust to network initialization and is capable of both adding and removing network connections while learning.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"190 ","pages":"Article 107486"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing connectivity through network gradients for Restricted Boltzmann Machines\",\"authors\":\"Amanda Camacho Novaes de Oliveira, Daniel Ratton Figueiredo\",\"doi\":\"10.1016/j.neunet.2025.107486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leveraging sparse networks to connect successive layers in deep neural networks has recently been shown to provide benefits to large-scale state-of-the-art models. However, network connectivity also plays a significant role in the learning performance of shallow networks, such as the classic Restricted Boltzmann Machine (RBM). Efficiently finding sparse connectivity patterns that improve the learning performance of shallow networks is a fundamental problem. While recent principled approaches explicitly include network connections as model parameters that must be optimized, they often rely on explicit penalization or network sparsity as a hyperparameter. This work presents the Network Connectivity Gradients (NCG), an optimization method to find optimal connectivity patterns for RBMs. NCG leverages the idea of network gradients: given a specific connection pattern, it determines the gradient of every possible connection and uses the gradient to drive a continuous connection strength parameter that in turn is used to determine the connection pattern. Thus, learning RBM parameters and learning network connections is truly jointly performed, albeit with different learning rates, and without changes to the model’s classic energy-based objective function. The proposed method is applied to the MNIST and other data sets showing that better RBM models are found for the benchmark tasks of sample generation and classification. Results also show that NCG is robust to network initialization and is capable of both adding and removing network connections while learning.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"190 \",\"pages\":\"Article 107486\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089360802500365X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802500365X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Optimizing connectivity through network gradients for Restricted Boltzmann Machines
Leveraging sparse networks to connect successive layers in deep neural networks has recently been shown to provide benefits to large-scale state-of-the-art models. However, network connectivity also plays a significant role in the learning performance of shallow networks, such as the classic Restricted Boltzmann Machine (RBM). Efficiently finding sparse connectivity patterns that improve the learning performance of shallow networks is a fundamental problem. While recent principled approaches explicitly include network connections as model parameters that must be optimized, they often rely on explicit penalization or network sparsity as a hyperparameter. This work presents the Network Connectivity Gradients (NCG), an optimization method to find optimal connectivity patterns for RBMs. NCG leverages the idea of network gradients: given a specific connection pattern, it determines the gradient of every possible connection and uses the gradient to drive a continuous connection strength parameter that in turn is used to determine the connection pattern. Thus, learning RBM parameters and learning network connections is truly jointly performed, albeit with different learning rates, and without changes to the model’s classic energy-based objective function. The proposed method is applied to the MNIST and other data sets showing that better RBM models are found for the benchmark tasks of sample generation and classification. Results also show that NCG is robust to network initialization and is capable of both adding and removing network connections while learning.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.