代谢信号在睡眠调节中的作用:棕色脂肪组织

Q2 Medicine
Éva Szentirmai , Levente Kapás
{"title":"代谢信号在睡眠调节中的作用:棕色脂肪组织","authors":"Éva Szentirmai ,&nbsp;Levente Kapás","doi":"10.1016/j.nbscr.2025.100122","DOIUrl":null,"url":null,"abstract":"<div><div>The regulation of sleep, while primarily attributed to the interplay between circadian and homeostatic processes, is significantly influenced by a multitude of additional factors that profoundly impact sleep quantity and quality. These factors encompass both external environmental stimuli, such as ambient temperature and somatosensory inputs, and internal physiological changes. The intricate relationship between metabolism and sleep has been a subject of extensive research, with particular attention given to the role of metabolic signals in sleep regulation. Among these, the brown adipose tissue (BAT) has emerged as a key player, studied from various perspectives including its physiological responses to sleep deprivation, its effects on sleep when activated, the consequences of impaired BAT thermogenesis on sleep patterns, and its metabolic activity across different sleep states. The cumulative evidence from these investigations suggests that BAT plays a crucial role in maintaining an optimal metabolic environment conducive to sleep, a function that becomes particularly significant in contexts of prior sleep loss, inflammatory conditions, and fluctuations in ambient temperature.</div></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"18 ","pages":"Article 100122"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic signals in sleep regulation: the role of brown adipose tissue\",\"authors\":\"Éva Szentirmai ,&nbsp;Levente Kapás\",\"doi\":\"10.1016/j.nbscr.2025.100122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The regulation of sleep, while primarily attributed to the interplay between circadian and homeostatic processes, is significantly influenced by a multitude of additional factors that profoundly impact sleep quantity and quality. These factors encompass both external environmental stimuli, such as ambient temperature and somatosensory inputs, and internal physiological changes. The intricate relationship between metabolism and sleep has been a subject of extensive research, with particular attention given to the role of metabolic signals in sleep regulation. Among these, the brown adipose tissue (BAT) has emerged as a key player, studied from various perspectives including its physiological responses to sleep deprivation, its effects on sleep when activated, the consequences of impaired BAT thermogenesis on sleep patterns, and its metabolic activity across different sleep states. The cumulative evidence from these investigations suggests that BAT plays a crucial role in maintaining an optimal metabolic environment conducive to sleep, a function that becomes particularly significant in contexts of prior sleep loss, inflammatory conditions, and fluctuations in ambient temperature.</div></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"18 \",\"pages\":\"Article 100122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994425000112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994425000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

睡眠的调节,虽然主要归因于昼夜节律和体内平衡过程之间的相互作用,但也受到许多其他因素的显著影响,这些因素深刻地影响着睡眠的数量和质量。这些因素既包括外部环境刺激,如环境温度和体感输入,也包括内部生理变化。新陈代谢和睡眠之间的复杂关系一直是广泛研究的主题,特别关注代谢信号在睡眠调节中的作用。其中,棕色脂肪组织(BAT)已成为一个关键角色,从多个角度进行了研究,包括其对睡眠剥夺的生理反应、激活时对睡眠的影响、BAT产热功能受损对睡眠模式的影响,以及它在不同睡眠状态下的代谢活动。这些研究的累积证据表明,BAT在维持有利于睡眠的最佳代谢环境中起着至关重要的作用,这一功能在先前睡眠不足、炎症条件和环境温度波动的情况下变得尤为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic signals in sleep regulation: the role of brown adipose tissue
The regulation of sleep, while primarily attributed to the interplay between circadian and homeostatic processes, is significantly influenced by a multitude of additional factors that profoundly impact sleep quantity and quality. These factors encompass both external environmental stimuli, such as ambient temperature and somatosensory inputs, and internal physiological changes. The intricate relationship between metabolism and sleep has been a subject of extensive research, with particular attention given to the role of metabolic signals in sleep regulation. Among these, the brown adipose tissue (BAT) has emerged as a key player, studied from various perspectives including its physiological responses to sleep deprivation, its effects on sleep when activated, the consequences of impaired BAT thermogenesis on sleep patterns, and its metabolic activity across different sleep states. The cumulative evidence from these investigations suggests that BAT plays a crucial role in maintaining an optimal metabolic environment conducive to sleep, a function that becomes particularly significant in contexts of prior sleep loss, inflammatory conditions, and fluctuations in ambient temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Sleep and Circadian Rhythms
Neurobiology of Sleep and Circadian Rhythms Neuroscience-Behavioral Neuroscience
CiteScore
4.50
自引率
0.00%
发文量
9
审稿时长
69 days
期刊介绍: Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信