{"title":"局部与全局睡眠组织以及确定睡眠功能的探索","authors":"Hans P.A. Van Dongen","doi":"10.1016/j.nbscr.2025.100117","DOIUrl":null,"url":null,"abstract":"<div><div>The research of JM Krueger and colleagues, focusing on sleep organization as a means to elucidate sleep function, led to critical insights as to why we sleep. Krueger posited that, fundamentally, sleep occurs locally at the level of neuronal/glial assemblies (small networks of neurons and glia) and that the expression of sleep in these assemblies is dependent on their prior use. Neuronal/glial assemblies serve as units of information processing, which consumes energy and increases entropy so that the energy available for further information processing is use-dependently depleted. According to the laws of physics, when energy drops to a lower bound relative to entropy, information processing ceases – which results in local quiescence and locally reduced consciousness and manifests as <em>use-dependent local sleep</em>. The physics-based nature of local sleep implies that it is inevitable, has neither function nor purpose, and is by itself not subject to biology-based evolutionary shaping. But uncontrolled local sleep compromises vigilance and is a threat to safety, which needs to be addressed to ensure survival. This can be accomplished by preemptively regulating sleep at a more global level and in a way that is adapted to the organism's temporal, environmental and ecological niche. Such global sleep allows for energy resupply (through biological processes not unique to sleep) across many neuronal/glial assemblies simultaneously while the organism is relatively safe. Thus, <em>global sleep regulation</em> could be the biology-based adaptation to the physics-based problem of use-dependent local sleep intrusions into wakefulness. Global sleep precludes niche exploitation and thus comes at an opportunity cost – but, unlike local sleep, the regulation of global sleep is subject to evolutionary shaping and amenable to species-specific optimization. Furthermore, a variety of ancillary functions may be served during global sleep to retroactively address biological needs that arose from prior wakefulness. However, serving these functions may be merely opportunistic, as the temporal dynamics of global sleep regulation appear to be proactive rather than retroactive, prioritizing alignment of global sleep and wake timing with the organism's ecological niche. Regardless, the costs of use-dependent local sleep and the management thereof through global sleep regulation are likely to be outweighed by the evolutionary benefit of the presumed source of the local sleep problem – that is, information processing capability, or cognition. In essence, therefore, sleep may just be the unavoidable, but worthwhile, price we pay for cognition.</div></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"18 ","pages":"Article 100117"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local versus global sleep organization and the quest to determine sleep function\",\"authors\":\"Hans P.A. Van Dongen\",\"doi\":\"10.1016/j.nbscr.2025.100117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The research of JM Krueger and colleagues, focusing on sleep organization as a means to elucidate sleep function, led to critical insights as to why we sleep. Krueger posited that, fundamentally, sleep occurs locally at the level of neuronal/glial assemblies (small networks of neurons and glia) and that the expression of sleep in these assemblies is dependent on their prior use. Neuronal/glial assemblies serve as units of information processing, which consumes energy and increases entropy so that the energy available for further information processing is use-dependently depleted. According to the laws of physics, when energy drops to a lower bound relative to entropy, information processing ceases – which results in local quiescence and locally reduced consciousness and manifests as <em>use-dependent local sleep</em>. The physics-based nature of local sleep implies that it is inevitable, has neither function nor purpose, and is by itself not subject to biology-based evolutionary shaping. But uncontrolled local sleep compromises vigilance and is a threat to safety, which needs to be addressed to ensure survival. This can be accomplished by preemptively regulating sleep at a more global level and in a way that is adapted to the organism's temporal, environmental and ecological niche. Such global sleep allows for energy resupply (through biological processes not unique to sleep) across many neuronal/glial assemblies simultaneously while the organism is relatively safe. Thus, <em>global sleep regulation</em> could be the biology-based adaptation to the physics-based problem of use-dependent local sleep intrusions into wakefulness. Global sleep precludes niche exploitation and thus comes at an opportunity cost – but, unlike local sleep, the regulation of global sleep is subject to evolutionary shaping and amenable to species-specific optimization. Furthermore, a variety of ancillary functions may be served during global sleep to retroactively address biological needs that arose from prior wakefulness. However, serving these functions may be merely opportunistic, as the temporal dynamics of global sleep regulation appear to be proactive rather than retroactive, prioritizing alignment of global sleep and wake timing with the organism's ecological niche. Regardless, the costs of use-dependent local sleep and the management thereof through global sleep regulation are likely to be outweighed by the evolutionary benefit of the presumed source of the local sleep problem – that is, information processing capability, or cognition. In essence, therefore, sleep may just be the unavoidable, but worthwhile, price we pay for cognition.</div></div>\",\"PeriodicalId\":37827,\"journal\":{\"name\":\"Neurobiology of Sleep and Circadian Rhythms\",\"volume\":\"18 \",\"pages\":\"Article 100117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Sleep and Circadian Rhythms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451994425000069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994425000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Local versus global sleep organization and the quest to determine sleep function
The research of JM Krueger and colleagues, focusing on sleep organization as a means to elucidate sleep function, led to critical insights as to why we sleep. Krueger posited that, fundamentally, sleep occurs locally at the level of neuronal/glial assemblies (small networks of neurons and glia) and that the expression of sleep in these assemblies is dependent on their prior use. Neuronal/glial assemblies serve as units of information processing, which consumes energy and increases entropy so that the energy available for further information processing is use-dependently depleted. According to the laws of physics, when energy drops to a lower bound relative to entropy, information processing ceases – which results in local quiescence and locally reduced consciousness and manifests as use-dependent local sleep. The physics-based nature of local sleep implies that it is inevitable, has neither function nor purpose, and is by itself not subject to biology-based evolutionary shaping. But uncontrolled local sleep compromises vigilance and is a threat to safety, which needs to be addressed to ensure survival. This can be accomplished by preemptively regulating sleep at a more global level and in a way that is adapted to the organism's temporal, environmental and ecological niche. Such global sleep allows for energy resupply (through biological processes not unique to sleep) across many neuronal/glial assemblies simultaneously while the organism is relatively safe. Thus, global sleep regulation could be the biology-based adaptation to the physics-based problem of use-dependent local sleep intrusions into wakefulness. Global sleep precludes niche exploitation and thus comes at an opportunity cost – but, unlike local sleep, the regulation of global sleep is subject to evolutionary shaping and amenable to species-specific optimization. Furthermore, a variety of ancillary functions may be served during global sleep to retroactively address biological needs that arose from prior wakefulness. However, serving these functions may be merely opportunistic, as the temporal dynamics of global sleep regulation appear to be proactive rather than retroactive, prioritizing alignment of global sleep and wake timing with the organism's ecological niche. Regardless, the costs of use-dependent local sleep and the management thereof through global sleep regulation are likely to be outweighed by the evolutionary benefit of the presumed source of the local sleep problem – that is, information processing capability, or cognition. In essence, therefore, sleep may just be the unavoidable, but worthwhile, price we pay for cognition.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.