场上的纠缠和界面条件

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Antonina Maj, V. P. Nair
{"title":"场上的纠缠和界面条件","authors":"Antonina Maj, V. P. Nair","doi":"10.1103/physrevd.111.105027","DOIUrl":null,"url":null,"abstract":"We consider the vacuum wave function of a free scalar field theory in space partitioned into two regions, with the field obeying Robin conditions (of parameter κ</a:mi></a:mrow></a:math>) on the interface. A direct integration over fields in a subregion is carried out to obtain the reduced density matrix. This leads to a constructive proof of the Reeh-Schlieder theorem. We analyze the entanglement entropy as a function of the Robin parameter <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>κ</c:mi></c:math>. We also consider a specific conditional probability as another measure of entanglement which is more amenable to analysis of the dependence on interface conditions. Finally, we discuss a direct calculation of correlation functions and how it gives an alternate route to the reduced density matrix. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"1 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement and interface conditions on fields\",\"authors\":\"Antonina Maj, V. P. Nair\",\"doi\":\"10.1103/physrevd.111.105027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the vacuum wave function of a free scalar field theory in space partitioned into two regions, with the field obeying Robin conditions (of parameter κ</a:mi></a:mrow></a:math>) on the interface. A direct integration over fields in a subregion is carried out to obtain the reduced density matrix. This leads to a constructive proof of the Reeh-Schlieder theorem. We analyze the entanglement entropy as a function of the Robin parameter <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>κ</c:mi></c:math>. We also consider a specific conditional probability as another measure of entanglement which is more amenable to analysis of the dependence on interface conditions. Finally, we discuss a direct calculation of correlation functions and how it gives an alternate route to the reduced density matrix. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.105027\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.105027","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个自由标量场理论的真空波函数在空间上被划分为两个区域,并且在界面上的场服从Robin条件(参数κ)。对子区域的场进行直接积分,得到简化的密度矩阵。这导致了Reeh-Schlieder定理的构造性证明。我们分析了纠缠熵作为罗宾参数κ的函数。我们还考虑了一个特定的条件概率作为纠缠度的另一个度量,它更适合于分析对界面条件的依赖。最后,我们讨论了一种直接计算相关函数的方法,以及它是如何给出一种通向简化密度矩阵的替代路径的。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entanglement and interface conditions on fields
We consider the vacuum wave function of a free scalar field theory in space partitioned into two regions, with the field obeying Robin conditions (of parameter κ) on the interface. A direct integration over fields in a subregion is carried out to obtain the reduced density matrix. This leads to a constructive proof of the Reeh-Schlieder theorem. We analyze the entanglement entropy as a function of the Robin parameter κ. We also consider a specific conditional probability as another measure of entanglement which is more amenable to analysis of the dependence on interface conditions. Finally, we discuss a direct calculation of correlation functions and how it gives an alternate route to the reduced density matrix. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信