Xi He, Ruideng Wang, Xuezhe Liu, Renpeng Peng, Bikun Zhou, Li Wang, Xinbo Wei, Shuang Wang, Jinwu Bai, Qian Feng, Fang Zhou, Haifeng Liu, Yubo Fan
{"title":"可定制丝素蛋白为基础的水凝胶纤维支架按需多方面组织修复","authors":"Xi He, Ruideng Wang, Xuezhe Liu, Renpeng Peng, Bikun Zhou, Li Wang, Xinbo Wei, Shuang Wang, Jinwu Bai, Qian Feng, Fang Zhou, Haifeng Liu, Yubo Fan","doi":"10.1021/acsnano.5c03283","DOIUrl":null,"url":null,"abstract":"Hydrogel scaffolds represent an attractive tool for tissue repair. However, targeted tissue repair requires a specific shape and biological function design, and most natural-protein-based hydrogel scaffolds are predominantly confined to specific tissue repair applications. Here, we developed a versatile structural biomimetic natural protein platform through synergistic electrospinning, photopolymerization, and metal-coordination strategies. By integrating methacrylated silk fibroin (SFMA) with acrylated bisphosphonates (AcBP), we developed a dynamically functionalizable matrix that enables (1) customizable shape control via tunable electrospinning collectors and (2) on-demand biological function customization through metal-ion chelation. As a proof of concept, we demonstrate this platform’s scenario-specific therapeutic efficacy: (i) Mg<sup>2+</sup>-functionalized membranes (S-LB-Mg) that orchestrate angiogenic-osteogenic coupling in critical-sized calvarial defects, (ii) Ag<sup>+</sup>-integrated dressing (S-LB-Ag) enabling bacterial eradication via a nonantibiotic mechanism and accelerating infected wound closure, and (iii) Zn<sup>2+</sup>-loaded conduits (S-LB-Zn) that drive macrophage M2 polarization to enhance peripheral nerve regeneration. This naturally derived protein-based platform overcomes the potential side effects associated with clinical bioactive factor/antibiotic composite scaffolds, offering a simple and customizable solution for the repair and regeneration of diverse tissues in a cost-effective yet highly effective manner. Overall, our strategy provides an alternative perspective for constructing protein-derived hydrogel microfibers with customizable functions and shapes for tissue repair applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"244 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customizable Silk Fibroin-Based Hydrogel Fibrous Scaffold for On-Demand Multifaceted Tissue Repair\",\"authors\":\"Xi He, Ruideng Wang, Xuezhe Liu, Renpeng Peng, Bikun Zhou, Li Wang, Xinbo Wei, Shuang Wang, Jinwu Bai, Qian Feng, Fang Zhou, Haifeng Liu, Yubo Fan\",\"doi\":\"10.1021/acsnano.5c03283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogel scaffolds represent an attractive tool for tissue repair. However, targeted tissue repair requires a specific shape and biological function design, and most natural-protein-based hydrogel scaffolds are predominantly confined to specific tissue repair applications. Here, we developed a versatile structural biomimetic natural protein platform through synergistic electrospinning, photopolymerization, and metal-coordination strategies. By integrating methacrylated silk fibroin (SFMA) with acrylated bisphosphonates (AcBP), we developed a dynamically functionalizable matrix that enables (1) customizable shape control via tunable electrospinning collectors and (2) on-demand biological function customization through metal-ion chelation. As a proof of concept, we demonstrate this platform’s scenario-specific therapeutic efficacy: (i) Mg<sup>2+</sup>-functionalized membranes (S-LB-Mg) that orchestrate angiogenic-osteogenic coupling in critical-sized calvarial defects, (ii) Ag<sup>+</sup>-integrated dressing (S-LB-Ag) enabling bacterial eradication via a nonantibiotic mechanism and accelerating infected wound closure, and (iii) Zn<sup>2+</sup>-loaded conduits (S-LB-Zn) that drive macrophage M2 polarization to enhance peripheral nerve regeneration. This naturally derived protein-based platform overcomes the potential side effects associated with clinical bioactive factor/antibiotic composite scaffolds, offering a simple and customizable solution for the repair and regeneration of diverse tissues in a cost-effective yet highly effective manner. Overall, our strategy provides an alternative perspective for constructing protein-derived hydrogel microfibers with customizable functions and shapes for tissue repair applications.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"244 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c03283\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c03283","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrogel scaffolds represent an attractive tool for tissue repair. However, targeted tissue repair requires a specific shape and biological function design, and most natural-protein-based hydrogel scaffolds are predominantly confined to specific tissue repair applications. Here, we developed a versatile structural biomimetic natural protein platform through synergistic electrospinning, photopolymerization, and metal-coordination strategies. By integrating methacrylated silk fibroin (SFMA) with acrylated bisphosphonates (AcBP), we developed a dynamically functionalizable matrix that enables (1) customizable shape control via tunable electrospinning collectors and (2) on-demand biological function customization through metal-ion chelation. As a proof of concept, we demonstrate this platform’s scenario-specific therapeutic efficacy: (i) Mg2+-functionalized membranes (S-LB-Mg) that orchestrate angiogenic-osteogenic coupling in critical-sized calvarial defects, (ii) Ag+-integrated dressing (S-LB-Ag) enabling bacterial eradication via a nonantibiotic mechanism and accelerating infected wound closure, and (iii) Zn2+-loaded conduits (S-LB-Zn) that drive macrophage M2 polarization to enhance peripheral nerve regeneration. This naturally derived protein-based platform overcomes the potential side effects associated with clinical bioactive factor/antibiotic composite scaffolds, offering a simple and customizable solution for the repair and regeneration of diverse tissues in a cost-effective yet highly effective manner. Overall, our strategy provides an alternative perspective for constructing protein-derived hydrogel microfibers with customizable functions and shapes for tissue repair applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.