{"title":"基于深度学习的广泛免疫保护多价SARS-CoV-2肽疫苗设计","authors":"Ziyan Feng, Xuelian Pang, Qian Xu, Zijie Gu, Shiliang Li, Lili Zhu, Honglin Li","doi":"10.1016/j.eng.2025.04.025","DOIUrl":null,"url":null,"abstract":"The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants capable of evading both convalescent and vaccine-triggered antibody responses has underscored the pivotal role of T-cell immunity in antiviral defense. Here, we develop the ConFormer network for epitope prediction, which couples convolutional neural network (CNN) local features with Transformer global representations to enhance binding prediction performance, and employ a deep learning algorithm and bioinformatics workflows to identify conserved T-cell epitopes within the SARS-CoV-2 proteome. Five epitopes are identified as potential inducers of T-cell immune responses. Notably, the multi-valent vaccine composed of these five peptides significantly activates cluster of differentiation (CD)8<sup>+</sup> and CD4<sup>+</sup> T cells both <em>in vitro</em> and <em>in vivo</em>. The serum of mice immunized with this vaccine is able to neutralize the five major SARS-CoV-2 variants of concern. This study provides a candidate peptide vaccine with the potential to trigger antiviral T-cell responses, thereby offering the prospect of immune protection against SARS-CoV-2 variants.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"237 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Multi-Valent SARS-CoV-2 Peptide Vaccine for Broad Immune Protection via Deep Learning\",\"authors\":\"Ziyan Feng, Xuelian Pang, Qian Xu, Zijie Gu, Shiliang Li, Lili Zhu, Honglin Li\",\"doi\":\"10.1016/j.eng.2025.04.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants capable of evading both convalescent and vaccine-triggered antibody responses has underscored the pivotal role of T-cell immunity in antiviral defense. Here, we develop the ConFormer network for epitope prediction, which couples convolutional neural network (CNN) local features with Transformer global representations to enhance binding prediction performance, and employ a deep learning algorithm and bioinformatics workflows to identify conserved T-cell epitopes within the SARS-CoV-2 proteome. Five epitopes are identified as potential inducers of T-cell immune responses. Notably, the multi-valent vaccine composed of these five peptides significantly activates cluster of differentiation (CD)8<sup>+</sup> and CD4<sup>+</sup> T cells both <em>in vitro</em> and <em>in vivo</em>. The serum of mice immunized with this vaccine is able to neutralize the five major SARS-CoV-2 variants of concern. This study provides a candidate peptide vaccine with the potential to trigger antiviral T-cell responses, thereby offering the prospect of immune protection against SARS-CoV-2 variants.\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.eng.2025.04.025\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2025.04.025","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of a Multi-Valent SARS-CoV-2 Peptide Vaccine for Broad Immune Protection via Deep Learning
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants capable of evading both convalescent and vaccine-triggered antibody responses has underscored the pivotal role of T-cell immunity in antiviral defense. Here, we develop the ConFormer network for epitope prediction, which couples convolutional neural network (CNN) local features with Transformer global representations to enhance binding prediction performance, and employ a deep learning algorithm and bioinformatics workflows to identify conserved T-cell epitopes within the SARS-CoV-2 proteome. Five epitopes are identified as potential inducers of T-cell immune responses. Notably, the multi-valent vaccine composed of these five peptides significantly activates cluster of differentiation (CD)8+ and CD4+ T cells both in vitro and in vivo. The serum of mice immunized with this vaccine is able to neutralize the five major SARS-CoV-2 variants of concern. This study provides a candidate peptide vaccine with the potential to trigger antiviral T-cell responses, thereby offering the prospect of immune protection against SARS-CoV-2 variants.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.