{"title":"综合转录组学和代谢组学分析揭示了蛋鸡生物量和非结构性碳水化合物分配的调控机制。在阴凉处。","authors":"Wenna Liu, Ruili Luo, Hongwei Wang, Yu Jing, Huaqiang Zhao, Weina Zou, Meifang Hou, Lili Song","doi":"10.1007/s12298-025-01588-0","DOIUrl":null,"url":null,"abstract":"<p><p>The adaptability of <i>Emmenopterys henryi</i> Oliv. to shade in the forest is a crucial intrinsic driving force for its natural renewal. Elucidating the influence of shade on biomass and non-structural carbohydrate (NSC) accumulation and allocation in leaf, stem and root will help to understand the endangerment mechanism of <i>E. henryi.</i> Results showed that <i>E. henryi</i> invested more biomass in leaf than in stem and root under shade. The biomass was positively correlated with the NSC pool in leaf, stem and root, respectively. The biomass fraction of leaf, stem or root was positively correlated with NSC fraction in leaf, stem or root of <i>E. henryi</i>, respectively. Starch and sucrose metabolism was proved to be the commonly enriched pathway in leaf, stem and root of <i>E. henryi</i> under shade, the key genes that were regulated differentially by shade. The hub genes regulating accumulation and distribution of biomass and NSC in leaf, stem and root of <i>E. henryi</i> under shade mainly correlated with photosynthesis, respiration, monosaccharides transportation, and cell expansion. Further research into these hub genes will be helpful for illumination of the adaptation mechanism of <i>E. henryi</i> to shade.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01588-0.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 4","pages":"571-590"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116963/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated transcriptome and metabolome analyses reveal regulation mechanism of biomass and non‑structural carbohydrate allocation in <i>Emmenopterys henryi</i> Oliv. under shade.\",\"authors\":\"Wenna Liu, Ruili Luo, Hongwei Wang, Yu Jing, Huaqiang Zhao, Weina Zou, Meifang Hou, Lili Song\",\"doi\":\"10.1007/s12298-025-01588-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adaptability of <i>Emmenopterys henryi</i> Oliv. to shade in the forest is a crucial intrinsic driving force for its natural renewal. Elucidating the influence of shade on biomass and non-structural carbohydrate (NSC) accumulation and allocation in leaf, stem and root will help to understand the endangerment mechanism of <i>E. henryi.</i> Results showed that <i>E. henryi</i> invested more biomass in leaf than in stem and root under shade. The biomass was positively correlated with the NSC pool in leaf, stem and root, respectively. The biomass fraction of leaf, stem or root was positively correlated with NSC fraction in leaf, stem or root of <i>E. henryi</i>, respectively. Starch and sucrose metabolism was proved to be the commonly enriched pathway in leaf, stem and root of <i>E. henryi</i> under shade, the key genes that were regulated differentially by shade. The hub genes regulating accumulation and distribution of biomass and NSC in leaf, stem and root of <i>E. henryi</i> under shade mainly correlated with photosynthesis, respiration, monosaccharides transportation, and cell expansion. Further research into these hub genes will be helpful for illumination of the adaptation mechanism of <i>E. henryi</i> to shade.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01588-0.</p>\",\"PeriodicalId\":20148,\"journal\":{\"name\":\"Physiology and Molecular Biology of Plants\",\"volume\":\"31 4\",\"pages\":\"571-590\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology and Molecular Biology of Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12298-025-01588-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01588-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Integrated transcriptome and metabolome analyses reveal regulation mechanism of biomass and non‑structural carbohydrate allocation in Emmenopterys henryi Oliv. under shade.
The adaptability of Emmenopterys henryi Oliv. to shade in the forest is a crucial intrinsic driving force for its natural renewal. Elucidating the influence of shade on biomass and non-structural carbohydrate (NSC) accumulation and allocation in leaf, stem and root will help to understand the endangerment mechanism of E. henryi. Results showed that E. henryi invested more biomass in leaf than in stem and root under shade. The biomass was positively correlated with the NSC pool in leaf, stem and root, respectively. The biomass fraction of leaf, stem or root was positively correlated with NSC fraction in leaf, stem or root of E. henryi, respectively. Starch and sucrose metabolism was proved to be the commonly enriched pathway in leaf, stem and root of E. henryi under shade, the key genes that were regulated differentially by shade. The hub genes regulating accumulation and distribution of biomass and NSC in leaf, stem and root of E. henryi under shade mainly correlated with photosynthesis, respiration, monosaccharides transportation, and cell expansion. Further research into these hub genes will be helpful for illumination of the adaptation mechanism of E. henryi to shade.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01588-0.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.