Xgr通过促进马氏小管的葡萄糖摄取参与果蝇的体型控制。

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhiwei Lin, Zihao He, Jianfeng Guo, Xiaofang Ji, Ze Hu, Yingsen Tang, Chuanxian Wei, Jiyong Liu, Wenqi Wu, Jun Ma, Renjie Jiao
{"title":"Xgr通过促进马氏小管的葡萄糖摄取参与果蝇的体型控制。","authors":"Zhiwei Lin, Zihao He, Jianfeng Guo, Xiaofang Ji, Ze Hu, Yingsen Tang, Chuanxian Wei, Jiyong Liu, Wenqi Wu, Jun Ma, Renjie Jiao","doi":"10.1016/j.jgg.2025.05.007","DOIUrl":null,"url":null,"abstract":"<p><p>Body size control is fundamental to development and requires proper energy engagement. One of the key energy sensing factors is AMP-activated protein kinase (AMPK), which regulates glucose uptake to ensure ATP production and nutrition supply during development. Here, we identify that the mutation of xgr, a gene encoding an ATPase, results in a reduced body size in Drosophila. Xgr is primarily expressed in the epithelial cells of the Malpighian tubules and the midguts. Loss of xgr leads to the inactivation of the AMPK signaling due to an increased ATP level. Glucose reabsorption in the Malpighian tubules is significantly reduced, as the Glut1 translocation to the plasma membrane is significantly disrupted in the absence of Xgr function. Our results suggest that Xgr function in the Malpighian tubules is essential to systemic glucose supply and energy homeostasis at the organismal level, thereby impacting body size. Our findings provide a mechanistic connection between energy homeostasis and animal size control during development.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Xgr is involved in body size control in Drosophila through promoting glucose uptake in the Malpighian tubules.\",\"authors\":\"Zhiwei Lin, Zihao He, Jianfeng Guo, Xiaofang Ji, Ze Hu, Yingsen Tang, Chuanxian Wei, Jiyong Liu, Wenqi Wu, Jun Ma, Renjie Jiao\",\"doi\":\"10.1016/j.jgg.2025.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Body size control is fundamental to development and requires proper energy engagement. One of the key energy sensing factors is AMP-activated protein kinase (AMPK), which regulates glucose uptake to ensure ATP production and nutrition supply during development. Here, we identify that the mutation of xgr, a gene encoding an ATPase, results in a reduced body size in Drosophila. Xgr is primarily expressed in the epithelial cells of the Malpighian tubules and the midguts. Loss of xgr leads to the inactivation of the AMPK signaling due to an increased ATP level. Glucose reabsorption in the Malpighian tubules is significantly reduced, as the Glut1 translocation to the plasma membrane is significantly disrupted in the absence of Xgr function. Our results suggest that Xgr function in the Malpighian tubules is essential to systemic glucose supply and energy homeostasis at the organismal level, thereby impacting body size. Our findings provide a mechanistic connection between energy homeostasis and animal size control during development.</p>\",\"PeriodicalId\":54825,\"journal\":{\"name\":\"Journal of Genetics and Genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jgg.2025.05.007\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.05.007","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

体型控制是发育的基础,需要适当的能量摄入。其中一个关键的能量感知因子是ATP激活蛋白激酶(AMPK),它调节葡萄糖摄取以确保发育过程中ATP的产生和营养供应。在这里,我们发现xgr(一种编码atp酶的基因)的突变导致果蝇体型缩小。Xgr主要表达于马氏小管和中肠的上皮细胞中。由于ATP水平升高,xgr的缺失导致AMPK信号的失活。葡萄糖在马尔比氏小管中的重吸收显著减少,因为在缺乏Xgr功能的情况下,Glut1向质膜的易位被显著破坏。我们的研究结果表明,Xgr在马氏小管中的功能对机体水平的全身葡萄糖供应和能量稳态至关重要,从而影响体型。我们的发现提供了能量稳态和动物发育过程中大小控制之间的机制联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Xgr is involved in body size control in Drosophila through promoting glucose uptake in the Malpighian tubules.

Body size control is fundamental to development and requires proper energy engagement. One of the key energy sensing factors is AMP-activated protein kinase (AMPK), which regulates glucose uptake to ensure ATP production and nutrition supply during development. Here, we identify that the mutation of xgr, a gene encoding an ATPase, results in a reduced body size in Drosophila. Xgr is primarily expressed in the epithelial cells of the Malpighian tubules and the midguts. Loss of xgr leads to the inactivation of the AMPK signaling due to an increased ATP level. Glucose reabsorption in the Malpighian tubules is significantly reduced, as the Glut1 translocation to the plasma membrane is significantly disrupted in the absence of Xgr function. Our results suggest that Xgr function in the Malpighian tubules is essential to systemic glucose supply and energy homeostasis at the organismal level, thereby impacting body size. Our findings provide a mechanistic connection between energy homeostasis and animal size control during development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信