Qingdian Yan, Xianghong Li, Jianbin Luo, Ming Zhao
{"title":"能量相关催化反应的单分子荧光成像。","authors":"Qingdian Yan, Xianghong Li, Jianbin Luo, Ming Zhao","doi":"10.1021/cbmi.4c00112","DOIUrl":null,"url":null,"abstract":"<p><p>The pressing challenges of the energy crisis and environmental problems necessitate the pursuit of efficient and sustainable energy conversion technologies, wherein catalytic processes play a vital role in addressing these issues. Single-molecule fluorescence microscopy (SMFM) offers a transformative approach to understanding various catalytic reactions by enabling real-time visualization of molecular adsorption, diffusion, and transformation on catalytic surfaces. The unprecedented insights into the spatial distribution of active sites, catalytic heterogeneity, and the dynamics of key intermediates result in single- or subparticle level structure-property relations, thereby offering insightful perspectives for catalyst design and mechanistic understanding of energy-related catalytic processes. In this review, we provide an overview of the recent progress in using SMFM for investigating energy-related catalytic reactions. The advancement in SMFM imaging techniques for investigating nonfluorescent chemical processes is also highlighted. Finally, we conclude the review by commenting on the current challenges and prospects in advancing SMFM in energy research. We hope that the capable SMFM imaging techniques and insights will promote the development and realistic application of various energy-related catalytic reactions, together with inspiring researchers to explore the power of SMFM in other applications.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 5","pages":"280-300"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-Molecule Fluorescence Imaging of Energy-Related Catalytic Reactions.\",\"authors\":\"Qingdian Yan, Xianghong Li, Jianbin Luo, Ming Zhao\",\"doi\":\"10.1021/cbmi.4c00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pressing challenges of the energy crisis and environmental problems necessitate the pursuit of efficient and sustainable energy conversion technologies, wherein catalytic processes play a vital role in addressing these issues. Single-molecule fluorescence microscopy (SMFM) offers a transformative approach to understanding various catalytic reactions by enabling real-time visualization of molecular adsorption, diffusion, and transformation on catalytic surfaces. The unprecedented insights into the spatial distribution of active sites, catalytic heterogeneity, and the dynamics of key intermediates result in single- or subparticle level structure-property relations, thereby offering insightful perspectives for catalyst design and mechanistic understanding of energy-related catalytic processes. In this review, we provide an overview of the recent progress in using SMFM for investigating energy-related catalytic reactions. The advancement in SMFM imaging techniques for investigating nonfluorescent chemical processes is also highlighted. Finally, we conclude the review by commenting on the current challenges and prospects in advancing SMFM in energy research. We hope that the capable SMFM imaging techniques and insights will promote the development and realistic application of various energy-related catalytic reactions, together with inspiring researchers to explore the power of SMFM in other applications.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"3 5\",\"pages\":\"280-300\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/cbmi.4c00112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/26 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.4c00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Single-Molecule Fluorescence Imaging of Energy-Related Catalytic Reactions.
The pressing challenges of the energy crisis and environmental problems necessitate the pursuit of efficient and sustainable energy conversion technologies, wherein catalytic processes play a vital role in addressing these issues. Single-molecule fluorescence microscopy (SMFM) offers a transformative approach to understanding various catalytic reactions by enabling real-time visualization of molecular adsorption, diffusion, and transformation on catalytic surfaces. The unprecedented insights into the spatial distribution of active sites, catalytic heterogeneity, and the dynamics of key intermediates result in single- or subparticle level structure-property relations, thereby offering insightful perspectives for catalyst design and mechanistic understanding of energy-related catalytic processes. In this review, we provide an overview of the recent progress in using SMFM for investigating energy-related catalytic reactions. The advancement in SMFM imaging techniques for investigating nonfluorescent chemical processes is also highlighted. Finally, we conclude the review by commenting on the current challenges and prospects in advancing SMFM in energy research. We hope that the capable SMFM imaging techniques and insights will promote the development and realistic application of various energy-related catalytic reactions, together with inspiring researchers to explore the power of SMFM in other applications.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging