{"title":"基于无人机多光谱影像和深度学习的水稻冠层叶面积指数多时段统一估计","authors":"Haixia Li, Qian Li, Chunlai Yu, Shanjun Luo","doi":"10.1186/s13007-025-01398-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rice is one of the major food crops in the world, and the monitoring of its growth condition is of great significance for guaranteeing food security and promoting sustainable agricultural development. Leaf area index (LAI) is a key indicator for assessing the growth condition and yield potential of rice, and the traditional methods for obtaining LAI have problems such as low efficiency and large error. With the development of remote sensing technology, unmanned aerial multispectral remote sensing combined with deep learning technology provides a new way for efficient and accurate estimation of LAI in rice.</p><p><strong>Results: </strong>In this study, a multispectral camera mounted on a UAV was utilized to acquire rice canopy image data, and rice LAI was uniformly estimated over multiple periods by the multilayer perceptron (MLP) and convolutional neural network (CNN) models in deep learning. The results showed that the CNN model based on five-band reflectance images (490, 550, 670, 720, and 850 nm) as input after feature screening exhibited high estimation accuracy at different growth stages. Compared with the traditional MLP model with multiple vegetation indices as inputs, the CNN model could better process the original multispectral image data, effectively avoiding the problem of vegetation index saturation, and improving the accuracies by 4.89, 5.76, 10.96, 1.84 and 6.01% in the rice tillering, jointing, booting, and heading periods, respectively, and the overall accuracy was improved by 6.01%. Moreover, the model accuracies (MLP and CNN) before and after variable screening showed noticeable changes. Conducting variable screening contributed to a substantial improvement in the accuracy of rice LAI estimation.</p><p><strong>Conclusions: </strong>UAV multispectral remote sensing combined with CNN technology provides an efficient and accurate method for the unified multi-period estimation of rice LAI. Moreover, the generalization ability and adaptability of the model were further improved by rational variable screening and data enhancement techniques. This study can provide a technical support for precision agriculture and a more accurate solution for rice growth monitoring. More feature extraction and variable screening methods can be further explored in future studies by optimizing the model structure to improve the accuracy and stability of the model.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"73"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123809/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unified estimation of rice canopy leaf area index over multiple periods based on UAV multispectral imagery and deep learning.\",\"authors\":\"Haixia Li, Qian Li, Chunlai Yu, Shanjun Luo\",\"doi\":\"10.1186/s13007-025-01398-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rice is one of the major food crops in the world, and the monitoring of its growth condition is of great significance for guaranteeing food security and promoting sustainable agricultural development. Leaf area index (LAI) is a key indicator for assessing the growth condition and yield potential of rice, and the traditional methods for obtaining LAI have problems such as low efficiency and large error. With the development of remote sensing technology, unmanned aerial multispectral remote sensing combined with deep learning technology provides a new way for efficient and accurate estimation of LAI in rice.</p><p><strong>Results: </strong>In this study, a multispectral camera mounted on a UAV was utilized to acquire rice canopy image data, and rice LAI was uniformly estimated over multiple periods by the multilayer perceptron (MLP) and convolutional neural network (CNN) models in deep learning. The results showed that the CNN model based on five-band reflectance images (490, 550, 670, 720, and 850 nm) as input after feature screening exhibited high estimation accuracy at different growth stages. Compared with the traditional MLP model with multiple vegetation indices as inputs, the CNN model could better process the original multispectral image data, effectively avoiding the problem of vegetation index saturation, and improving the accuracies by 4.89, 5.76, 10.96, 1.84 and 6.01% in the rice tillering, jointing, booting, and heading periods, respectively, and the overall accuracy was improved by 6.01%. Moreover, the model accuracies (MLP and CNN) before and after variable screening showed noticeable changes. Conducting variable screening contributed to a substantial improvement in the accuracy of rice LAI estimation.</p><p><strong>Conclusions: </strong>UAV multispectral remote sensing combined with CNN technology provides an efficient and accurate method for the unified multi-period estimation of rice LAI. Moreover, the generalization ability and adaptability of the model were further improved by rational variable screening and data enhancement techniques. This study can provide a technical support for precision agriculture and a more accurate solution for rice growth monitoring. More feature extraction and variable screening methods can be further explored in future studies by optimizing the model structure to improve the accuracy and stability of the model.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"73\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01398-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01398-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Unified estimation of rice canopy leaf area index over multiple periods based on UAV multispectral imagery and deep learning.
Background: Rice is one of the major food crops in the world, and the monitoring of its growth condition is of great significance for guaranteeing food security and promoting sustainable agricultural development. Leaf area index (LAI) is a key indicator for assessing the growth condition and yield potential of rice, and the traditional methods for obtaining LAI have problems such as low efficiency and large error. With the development of remote sensing technology, unmanned aerial multispectral remote sensing combined with deep learning technology provides a new way for efficient and accurate estimation of LAI in rice.
Results: In this study, a multispectral camera mounted on a UAV was utilized to acquire rice canopy image data, and rice LAI was uniformly estimated over multiple periods by the multilayer perceptron (MLP) and convolutional neural network (CNN) models in deep learning. The results showed that the CNN model based on five-band reflectance images (490, 550, 670, 720, and 850 nm) as input after feature screening exhibited high estimation accuracy at different growth stages. Compared with the traditional MLP model with multiple vegetation indices as inputs, the CNN model could better process the original multispectral image data, effectively avoiding the problem of vegetation index saturation, and improving the accuracies by 4.89, 5.76, 10.96, 1.84 and 6.01% in the rice tillering, jointing, booting, and heading periods, respectively, and the overall accuracy was improved by 6.01%. Moreover, the model accuracies (MLP and CNN) before and after variable screening showed noticeable changes. Conducting variable screening contributed to a substantial improvement in the accuracy of rice LAI estimation.
Conclusions: UAV multispectral remote sensing combined with CNN technology provides an efficient and accurate method for the unified multi-period estimation of rice LAI. Moreover, the generalization ability and adaptability of the model were further improved by rational variable screening and data enhancement techniques. This study can provide a technical support for precision agriculture and a more accurate solution for rice growth monitoring. More feature extraction and variable screening methods can be further explored in future studies by optimizing the model structure to improve the accuracy and stability of the model.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.