Bo Tong, Guan Li, Xiangli Bu, Yang Wang, Xingchen Yu
{"title":"一种基于深度学习的个人防护装备检测算法。","authors":"Bo Tong, Guan Li, Xiangli Bu, Yang Wang, Xingchen Yu","doi":"10.1371/journal.pone.0322115","DOIUrl":null,"url":null,"abstract":"<p><p>Personal protective equipment (PPE) is critical for ensuring the safety of construction workers. However, site surveillance images from construction sites often feature multi-size and multi-scale targets, leading to low detection accuracy for PPE in existing models. To address this issue, this paper proposes an improved model based on YOLOv8n.By enriching feature diversity and enhancing the model's adaptability to geometric transformations, the detection accuracy is improved.A Multi-Scale Group Convolution Module (MSGP) was designed to extract multi-level features using different convolution kernels. A Multi-Scale Feature Diffusion Pyramid Network (MFDPN) was developed, which aggregates multi-scale features through the Multiscale Feature Focus (MFF) module and diffuses them across scales, providing each scale with detailed contextual information. A customized Task Alignment Module was introduced to integrate interactive features, optimizing both classification and localization tasks. The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. Additionally, structured pruning techniques were applied to the model at varying levels, further reducing computational and parameter loads. Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. The proposed MFD-YOLO(1.5) model achieves significant progress in detecting personal protective equipment on construction sites, with a substantial reduction in parameter count, making it suitable for deployment on resource-constrained edge devices.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0322115"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121810/pdf/","citationCount":"0","resultStr":"{\"title\":\"A deep learning-based algorithm for the detection of personal protective equipment.\",\"authors\":\"Bo Tong, Guan Li, Xiangli Bu, Yang Wang, Xingchen Yu\",\"doi\":\"10.1371/journal.pone.0322115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Personal protective equipment (PPE) is critical for ensuring the safety of construction workers. However, site surveillance images from construction sites often feature multi-size and multi-scale targets, leading to low detection accuracy for PPE in existing models. To address this issue, this paper proposes an improved model based on YOLOv8n.By enriching feature diversity and enhancing the model's adaptability to geometric transformations, the detection accuracy is improved.A Multi-Scale Group Convolution Module (MSGP) was designed to extract multi-level features using different convolution kernels. A Multi-Scale Feature Diffusion Pyramid Network (MFDPN) was developed, which aggregates multi-scale features through the Multiscale Feature Focus (MFF) module and diffuses them across scales, providing each scale with detailed contextual information. A customized Task Alignment Module was introduced to integrate interactive features, optimizing both classification and localization tasks. The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. Additionally, structured pruning techniques were applied to the model at varying levels, further reducing computational and parameter loads. Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. The proposed MFD-YOLO(1.5) model achieves significant progress in detecting personal protective equipment on construction sites, with a substantial reduction in parameter count, making it suitable for deployment on resource-constrained edge devices.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0322115\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121810/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0322115\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0322115","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A deep learning-based algorithm for the detection of personal protective equipment.
Personal protective equipment (PPE) is critical for ensuring the safety of construction workers. However, site surveillance images from construction sites often feature multi-size and multi-scale targets, leading to low detection accuracy for PPE in existing models. To address this issue, this paper proposes an improved model based on YOLOv8n.By enriching feature diversity and enhancing the model's adaptability to geometric transformations, the detection accuracy is improved.A Multi-Scale Group Convolution Module (MSGP) was designed to extract multi-level features using different convolution kernels. A Multi-Scale Feature Diffusion Pyramid Network (MFDPN) was developed, which aggregates multi-scale features through the Multiscale Feature Focus (MFF) module and diffuses them across scales, providing each scale with detailed contextual information. A customized Task Alignment Module was introduced to integrate interactive features, optimizing both classification and localization tasks. The DCNV2(Deformable Convolutional Networks v2) module was incorporated to handle geometric scale transformations by generating spatial offsets and feature masks from interactive features, thereby improving localization accuracy and dynamically selecting weights to enhance classification precision.The improved model incorporates rich multi-level and multi-scale features, allowing it to better adapt to tasks involving geometric transformations and aligning with the image data distribution in construction scenarios. Additionally, structured pruning techniques were applied to the model at varying levels, further reducing computational and parameter loads. Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. The proposed MFD-YOLO(1.5) model achieves significant progress in detecting personal protective equipment on construction sites, with a substantial reduction in parameter count, making it suitable for deployment on resource-constrained edge devices.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage