Haiyang Du, Gao Si, Jiqing Si, Xuejie Song, Fuchun Si
{"title":"单细胞RNA测序揭示了GTF2F2在卵巢癌发生和发展中的作用。","authors":"Haiyang Du, Gao Si, Jiqing Si, Xuejie Song, Fuchun Si","doi":"10.1186/s13048-025-01686-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer is one of the most common malignancies of the female reproductive system and is associated with poor prognosis. This study aimed to utilize single-cell RNA sequencing to investigate the heterogeneity of malignant epithelial cells in ovarian cancer, focusing on their potential functions and the implications for treatment and prognosis.</p><p><strong>Methods: </strong>Single-cell RNA sequencing data were clustered using a single-cell transcriptome clustering method, and malignant epithelial cells were identified through copy number variation analysis. The interaction patterns between different malignant subpopulations and immune/stromal cells were analyzed using cell-to-cell communication analysis. A risk score (URS) model based on the UBE2C + epithelial subpopulation was then constructed through LASSO and multivariable Cox regression. High and low URS groups were compared in terms of tumor mutational burden (TMB), survival outcomes, and drug sensitivity. Finally, the role of GTF2F2 in ovarian cancer progression was validated through gene knockdown experiments in an ovarian cancer cell line (ES-2).</p><p><strong>Results: </strong>Three major malignant epithelial cell subpopulations were identified (TMSB4X + Epi, TSC22D1 + Epi, and UBE2C + Epi). The UBE2C + Epi subpopulation exhibited higher stemness and greater invasive potential. The constructed URS model effectively stratified patients into high- and low-risk groups, with the high-risk group displaying a higher TMB level (p = 0.00011). Drug sensitivity predictions indicated that osimertinib, rapamycin, and dihydrorotenone might have stronger inhibitory effects in the high-risk group, whereas ERK inhibitors were more effective in the low-risk group. Functional assays demonstrated that GTF2F2 knockdown significantly suppressed ovarian cancer cell migration and invasion. Western blot analyses further showed elevated E-cadherin and reduced N-cadherin expression, suggesting that GTF2F2 may promote epithelial-mesenchymal transition (EMT).</p><p><strong>Conclusion: </strong>The risk score model established in this study offers a novel framework for patient stratification and personalized therapy. Notably, the identification of the UBE2C + Epi subpopulation and key genes such as GTF2F2 highlights potential diagnostic and therapeutic targets, shedding light on the pathogenesis of ovarian cancer and paving the way for precision medicine approaches.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"18 1","pages":"114"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell RNA sequencing reveals the role of GTF2F2 in ovarian cancer oncogenesis and progression.\",\"authors\":\"Haiyang Du, Gao Si, Jiqing Si, Xuejie Song, Fuchun Si\",\"doi\":\"10.1186/s13048-025-01686-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ovarian cancer is one of the most common malignancies of the female reproductive system and is associated with poor prognosis. This study aimed to utilize single-cell RNA sequencing to investigate the heterogeneity of malignant epithelial cells in ovarian cancer, focusing on their potential functions and the implications for treatment and prognosis.</p><p><strong>Methods: </strong>Single-cell RNA sequencing data were clustered using a single-cell transcriptome clustering method, and malignant epithelial cells were identified through copy number variation analysis. The interaction patterns between different malignant subpopulations and immune/stromal cells were analyzed using cell-to-cell communication analysis. A risk score (URS) model based on the UBE2C + epithelial subpopulation was then constructed through LASSO and multivariable Cox regression. High and low URS groups were compared in terms of tumor mutational burden (TMB), survival outcomes, and drug sensitivity. Finally, the role of GTF2F2 in ovarian cancer progression was validated through gene knockdown experiments in an ovarian cancer cell line (ES-2).</p><p><strong>Results: </strong>Three major malignant epithelial cell subpopulations were identified (TMSB4X + Epi, TSC22D1 + Epi, and UBE2C + Epi). The UBE2C + Epi subpopulation exhibited higher stemness and greater invasive potential. The constructed URS model effectively stratified patients into high- and low-risk groups, with the high-risk group displaying a higher TMB level (p = 0.00011). Drug sensitivity predictions indicated that osimertinib, rapamycin, and dihydrorotenone might have stronger inhibitory effects in the high-risk group, whereas ERK inhibitors were more effective in the low-risk group. Functional assays demonstrated that GTF2F2 knockdown significantly suppressed ovarian cancer cell migration and invasion. Western blot analyses further showed elevated E-cadherin and reduced N-cadherin expression, suggesting that GTF2F2 may promote epithelial-mesenchymal transition (EMT).</p><p><strong>Conclusion: </strong>The risk score model established in this study offers a novel framework for patient stratification and personalized therapy. Notably, the identification of the UBE2C + Epi subpopulation and key genes such as GTF2F2 highlights potential diagnostic and therapeutic targets, shedding light on the pathogenesis of ovarian cancer and paving the way for precision medicine approaches.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":\"18 1\",\"pages\":\"114\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-025-01686-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-025-01686-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Single-cell RNA sequencing reveals the role of GTF2F2 in ovarian cancer oncogenesis and progression.
Background: Ovarian cancer is one of the most common malignancies of the female reproductive system and is associated with poor prognosis. This study aimed to utilize single-cell RNA sequencing to investigate the heterogeneity of malignant epithelial cells in ovarian cancer, focusing on their potential functions and the implications for treatment and prognosis.
Methods: Single-cell RNA sequencing data were clustered using a single-cell transcriptome clustering method, and malignant epithelial cells were identified through copy number variation analysis. The interaction patterns between different malignant subpopulations and immune/stromal cells were analyzed using cell-to-cell communication analysis. A risk score (URS) model based on the UBE2C + epithelial subpopulation was then constructed through LASSO and multivariable Cox regression. High and low URS groups were compared in terms of tumor mutational burden (TMB), survival outcomes, and drug sensitivity. Finally, the role of GTF2F2 in ovarian cancer progression was validated through gene knockdown experiments in an ovarian cancer cell line (ES-2).
Results: Three major malignant epithelial cell subpopulations were identified (TMSB4X + Epi, TSC22D1 + Epi, and UBE2C + Epi). The UBE2C + Epi subpopulation exhibited higher stemness and greater invasive potential. The constructed URS model effectively stratified patients into high- and low-risk groups, with the high-risk group displaying a higher TMB level (p = 0.00011). Drug sensitivity predictions indicated that osimertinib, rapamycin, and dihydrorotenone might have stronger inhibitory effects in the high-risk group, whereas ERK inhibitors were more effective in the low-risk group. Functional assays demonstrated that GTF2F2 knockdown significantly suppressed ovarian cancer cell migration and invasion. Western blot analyses further showed elevated E-cadherin and reduced N-cadherin expression, suggesting that GTF2F2 may promote epithelial-mesenchymal transition (EMT).
Conclusion: The risk score model established in this study offers a novel framework for patient stratification and personalized therapy. Notably, the identification of the UBE2C + Epi subpopulation and key genes such as GTF2F2 highlights potential diagnostic and therapeutic targets, shedding light on the pathogenesis of ovarian cancer and paving the way for precision medicine approaches.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.