Hossein Kabir, Jordan Wu, Sunav Dahal, Tony Joo, Nishant Garg
{"title":"SorpVision:一个基于计算机视觉的胶凝吸附分析综合数据集。","authors":"Hossein Kabir, Jordan Wu, Sunav Dahal, Tony Joo, Nishant Garg","doi":"10.1038/s41597-025-05185-4","DOIUrl":null,"url":null,"abstract":"<p><p>As the construction industry advances toward more efficient methods for assessing durability, the need for automated sorptivity evaluation has become increasingly critical. Consequently, this study introduces SorpVision, a dataset of 7,384 images (5,000 real and 2,384 synthetic) designed to support our custom computer vision-based framework for automated sorptivity evaluation in cementitious materials. Traditional methods, such as ASTM C1585, depend on manual weighing, which is time-consuming and limits measurement intervals. SorpVision, combined with a cost-effective USB camera setup and a robust vision algorithm, facilitates real-time water level detection in cementitious systems. The framework, trained using 1,440 data points from pastes with water-to-cement (w/c) ratios of 0.4-0.8 and curing durations of 1-7 days, achieves high predictive accuracy for initial and secondary sorptivities (R<sup>2</sup> > 0.9 for cement pastes). Moreover, it generalizes well to mortar and concrete, yielding R<sup>2</sup> values of 0.96 and 0.87 for initial sorptivity and 0.74 and 0.65 for secondary sorptivity, respectively. SorpVision offers an accurate, data-driven foundation for scalable, automated durability evaluations, supporting sustainable infrastructure development.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"904"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123020/pdf/","citationCount":"0","resultStr":"{\"title\":\"SorpVision: A Comprehensive Dataset for Cementitious Sorptivity Analysis Powered by Computer Vision.\",\"authors\":\"Hossein Kabir, Jordan Wu, Sunav Dahal, Tony Joo, Nishant Garg\",\"doi\":\"10.1038/s41597-025-05185-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the construction industry advances toward more efficient methods for assessing durability, the need for automated sorptivity evaluation has become increasingly critical. Consequently, this study introduces SorpVision, a dataset of 7,384 images (5,000 real and 2,384 synthetic) designed to support our custom computer vision-based framework for automated sorptivity evaluation in cementitious materials. Traditional methods, such as ASTM C1585, depend on manual weighing, which is time-consuming and limits measurement intervals. SorpVision, combined with a cost-effective USB camera setup and a robust vision algorithm, facilitates real-time water level detection in cementitious systems. The framework, trained using 1,440 data points from pastes with water-to-cement (w/c) ratios of 0.4-0.8 and curing durations of 1-7 days, achieves high predictive accuracy for initial and secondary sorptivities (R<sup>2</sup> > 0.9 for cement pastes). Moreover, it generalizes well to mortar and concrete, yielding R<sup>2</sup> values of 0.96 and 0.87 for initial sorptivity and 0.74 and 0.65 for secondary sorptivity, respectively. SorpVision offers an accurate, data-driven foundation for scalable, automated durability evaluations, supporting sustainable infrastructure development.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"904\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05185-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05185-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
SorpVision: A Comprehensive Dataset for Cementitious Sorptivity Analysis Powered by Computer Vision.
As the construction industry advances toward more efficient methods for assessing durability, the need for automated sorptivity evaluation has become increasingly critical. Consequently, this study introduces SorpVision, a dataset of 7,384 images (5,000 real and 2,384 synthetic) designed to support our custom computer vision-based framework for automated sorptivity evaluation in cementitious materials. Traditional methods, such as ASTM C1585, depend on manual weighing, which is time-consuming and limits measurement intervals. SorpVision, combined with a cost-effective USB camera setup and a robust vision algorithm, facilitates real-time water level detection in cementitious systems. The framework, trained using 1,440 data points from pastes with water-to-cement (w/c) ratios of 0.4-0.8 and curing durations of 1-7 days, achieves high predictive accuracy for initial and secondary sorptivities (R2 > 0.9 for cement pastes). Moreover, it generalizes well to mortar and concrete, yielding R2 values of 0.96 and 0.87 for initial sorptivity and 0.74 and 0.65 for secondary sorptivity, respectively. SorpVision offers an accurate, data-driven foundation for scalable, automated durability evaluations, supporting sustainable infrastructure development.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.