Yapeng Guo, Lei Yang, Li Yao, Chengdong Zhou, Yuanyuan Zhu, Chenxi Xu, Wenlong Wang, Jian Song, Mingzhen Zhang, Zhichao Deng
{"title":"川芎碳点通过破坏有害的氧化应激-细胞凋亡循环来减轻心脏损伤。","authors":"Yapeng Guo, Lei Yang, Li Yao, Chengdong Zhou, Yuanyuan Zhu, Chenxi Xu, Wenlong Wang, Jian Song, Mingzhen Zhang, Zhichao Deng","doi":"10.1186/s12951-025-03477-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myocardial ischemia-reperfusion injury (MIRI) represents a significant complication following myocardial infarction surgery, for which preventive strategies remain limited. The primary pathological characteristics of MIRI include oxidative stress and apoptosis.</p><p><strong>Results: </strong>This study presents the synthesis of carbon dots derived from Ligusticum Chuanxiong (LC-CDs) through the application of the hydrothermal method. The LC-CDs show strong scavenging abilities for free radicals, effectively reducing oxidative stress and preventing apoptosis, which helps combat MIRI. The findings demonstrate that LC-CDs can effectively neutralize excessive ROS within cells, thereby alleviating oxidative stress, restoring mitochondrial function, and preventing DNA damage. Concurrently, LC-CDs suppress the polarization of M1-type macrophages and reduce the secretion of pro-inflammatory cytokines. Following the in situ administration of LC-CDs into the hearts of MIRI-model rats, a significant reduction in the necrotic area of the myocardium was observed, alongside the restoration of cardiac function, with no adverse reactions reported. Moreover, similar to the pharmacological effects of Ligusticum chuanxiong, LC-CDs can also inhibit apoptosis by protecting mitochondria and suppressing the expression of apoptotic proteins (Caspase3, Caspase9, and Bax).</p><p><strong>Conclusions: </strong>The intervention strategy employing LC-CDs, which targets oxidative stress and apoptosis in MIRI, holds promise as a potential model for the clinical treatment of MIRI.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"391"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121267/pdf/","citationCount":"0","resultStr":"{\"title\":\"Carbon dots derived from Ligusticum Chuanxiong mitigate cardiac injury by disrupting the harmful oxidative stress-apoptosis cycle.\",\"authors\":\"Yapeng Guo, Lei Yang, Li Yao, Chengdong Zhou, Yuanyuan Zhu, Chenxi Xu, Wenlong Wang, Jian Song, Mingzhen Zhang, Zhichao Deng\",\"doi\":\"10.1186/s12951-025-03477-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myocardial ischemia-reperfusion injury (MIRI) represents a significant complication following myocardial infarction surgery, for which preventive strategies remain limited. The primary pathological characteristics of MIRI include oxidative stress and apoptosis.</p><p><strong>Results: </strong>This study presents the synthesis of carbon dots derived from Ligusticum Chuanxiong (LC-CDs) through the application of the hydrothermal method. The LC-CDs show strong scavenging abilities for free radicals, effectively reducing oxidative stress and preventing apoptosis, which helps combat MIRI. The findings demonstrate that LC-CDs can effectively neutralize excessive ROS within cells, thereby alleviating oxidative stress, restoring mitochondrial function, and preventing DNA damage. Concurrently, LC-CDs suppress the polarization of M1-type macrophages and reduce the secretion of pro-inflammatory cytokines. Following the in situ administration of LC-CDs into the hearts of MIRI-model rats, a significant reduction in the necrotic area of the myocardium was observed, alongside the restoration of cardiac function, with no adverse reactions reported. Moreover, similar to the pharmacological effects of Ligusticum chuanxiong, LC-CDs can also inhibit apoptosis by protecting mitochondria and suppressing the expression of apoptotic proteins (Caspase3, Caspase9, and Bax).</p><p><strong>Conclusions: </strong>The intervention strategy employing LC-CDs, which targets oxidative stress and apoptosis in MIRI, holds promise as a potential model for the clinical treatment of MIRI.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"391\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121267/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03477-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03477-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Carbon dots derived from Ligusticum Chuanxiong mitigate cardiac injury by disrupting the harmful oxidative stress-apoptosis cycle.
Background: Myocardial ischemia-reperfusion injury (MIRI) represents a significant complication following myocardial infarction surgery, for which preventive strategies remain limited. The primary pathological characteristics of MIRI include oxidative stress and apoptosis.
Results: This study presents the synthesis of carbon dots derived from Ligusticum Chuanxiong (LC-CDs) through the application of the hydrothermal method. The LC-CDs show strong scavenging abilities for free radicals, effectively reducing oxidative stress and preventing apoptosis, which helps combat MIRI. The findings demonstrate that LC-CDs can effectively neutralize excessive ROS within cells, thereby alleviating oxidative stress, restoring mitochondrial function, and preventing DNA damage. Concurrently, LC-CDs suppress the polarization of M1-type macrophages and reduce the secretion of pro-inflammatory cytokines. Following the in situ administration of LC-CDs into the hearts of MIRI-model rats, a significant reduction in the necrotic area of the myocardium was observed, alongside the restoration of cardiac function, with no adverse reactions reported. Moreover, similar to the pharmacological effects of Ligusticum chuanxiong, LC-CDs can also inhibit apoptosis by protecting mitochondria and suppressing the expression of apoptotic proteins (Caspase3, Caspase9, and Bax).
Conclusions: The intervention strategy employing LC-CDs, which targets oxidative stress and apoptosis in MIRI, holds promise as a potential model for the clinical treatment of MIRI.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.