{"title":"三维屈曲模型揭示了能量驱动生物膜皱折形态的演化过程。","authors":"Jin Wu, Jin Li, Jiankun Wang, Xiaoling Wang","doi":"10.1139/cjm-2024-0196","DOIUrl":null,"url":null,"abstract":"<p><p>On solid substrates, biofilms develop rich wrinkle morphologies during its growth. Based on the thin film buckling theory, we established a local three-dimensional biofilm/substrate buckling model, and explored the effects of mechanical forces, elastic modulus of the substrate and biofilm thickness on the wrinkle morphology. We simulated the wrinkle evolution in various patterns of Bacillus subtilis biofilm growing on agar substrates with different stiffness and found that the biofilm wrinkling process is the process of internal energy release. The stiffness of the substrate changes the wrinkling time of the biofilm; The biofilm wrinkle morphology (patterns II, III, IV) Uinternal and Uinternal/U0 decrease with nutrient consumption, and the biofilm evolves towards lower energy consumption. In the early stages of biofilm growth (patterns I, II, and III), the harder the agar substrate, the larger the Ufriction and Ufriction/U0, which is less conducive to biofilm expansion.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional buckling model reveals the evolution of energy-driven biofilm wrinkle morphologies.\",\"authors\":\"Jin Wu, Jin Li, Jiankun Wang, Xiaoling Wang\",\"doi\":\"10.1139/cjm-2024-0196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>On solid substrates, biofilms develop rich wrinkle morphologies during its growth. Based on the thin film buckling theory, we established a local three-dimensional biofilm/substrate buckling model, and explored the effects of mechanical forces, elastic modulus of the substrate and biofilm thickness on the wrinkle morphology. We simulated the wrinkle evolution in various patterns of Bacillus subtilis biofilm growing on agar substrates with different stiffness and found that the biofilm wrinkling process is the process of internal energy release. The stiffness of the substrate changes the wrinkling time of the biofilm; The biofilm wrinkle morphology (patterns II, III, IV) Uinternal and Uinternal/U0 decrease with nutrient consumption, and the biofilm evolves towards lower energy consumption. In the early stages of biofilm growth (patterns I, II, and III), the harder the agar substrate, the larger the Ufriction and Ufriction/U0, which is less conducive to biofilm expansion.</p>\",\"PeriodicalId\":9381,\"journal\":{\"name\":\"Canadian journal of microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2024-0196\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0196","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Three-dimensional buckling model reveals the evolution of energy-driven biofilm wrinkle morphologies.
On solid substrates, biofilms develop rich wrinkle morphologies during its growth. Based on the thin film buckling theory, we established a local three-dimensional biofilm/substrate buckling model, and explored the effects of mechanical forces, elastic modulus of the substrate and biofilm thickness on the wrinkle morphology. We simulated the wrinkle evolution in various patterns of Bacillus subtilis biofilm growing on agar substrates with different stiffness and found that the biofilm wrinkling process is the process of internal energy release. The stiffness of the substrate changes the wrinkling time of the biofilm; The biofilm wrinkle morphology (patterns II, III, IV) Uinternal and Uinternal/U0 decrease with nutrient consumption, and the biofilm evolves towards lower energy consumption. In the early stages of biofilm growth (patterns I, II, and III), the harder the agar substrate, the larger the Ufriction and Ufriction/U0, which is less conducive to biofilm expansion.
期刊介绍:
Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.