{"title":"基于Mo2C MXene的智能纳米复合材料在NIR-II生物窗口中用于癌症的活性靶向光热化疗。","authors":"Jianfeng Li, Zhihui Xin, Zhiqiang Bai, Jiang Li, Lu Zhao, Yunfeng Bai, Feng Feng","doi":"10.1021/acsbiomaterials.5c00403","DOIUrl":null,"url":null,"abstract":"<p><p>As a novel cancer treatment method, photothermal therapy (PTT) is considered an up-and-coming candidate for cancer treatment owing to its low invasiveness and ease of implementation. Nevertheless, single PTT in the first transparency (NIR-I, 750-1000 nm) biowindows is often insufficient to eliminate tumor cells due to light scattering and absorption at the tumor site. Therefore, the rational design of multifunctional nanocomposites for multimodal combination therapies based on PTT is attractive for improving treatment efficacy while reducing drug resistance and adverse reactions. Herein, we report a smart multifunctional nanocomposite DOX-Mo<sub>2</sub>C-PAA/Apt-M (DMPM) based on molybdenum carbide (Mo<sub>2</sub>C) MXene for active targeted photothermal-chemotherapy in the second transparency (NIR-II, 1000-1350 nm) biowindows. This nanocomposite effectively absorbed light and converted it into heat, achieving a photothermal conversion efficiency of 38.64% under NIR-II laser irradiation. Meanwhile, the DMPM nanocomposite exhibited pH and laser dual-stimuli-triggered doxorubicin (DOX) release in the tumor microenvironment. Furthermore, DMPM could effectively target MCF-7 solid tumors, significantly improving therapeutic efficacy. <i>In vitro</i> and <i>in vivo</i> studies confirmed that DMPM triggered significant cellular killing and tumor eradication without systemic toxicity. Our work not only presents a new approach for multimode cancer treatment but also expands the application of Mo<sub>2</sub>C MXene in the biomedical field.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":"3307-3317"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Smart Nanocomposite Based on Mo<sub>2</sub>C MXene for Active Targeted Photothermal-Chemotherapy of Cancer in NIR-II Biowindows.\",\"authors\":\"Jianfeng Li, Zhihui Xin, Zhiqiang Bai, Jiang Li, Lu Zhao, Yunfeng Bai, Feng Feng\",\"doi\":\"10.1021/acsbiomaterials.5c00403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a novel cancer treatment method, photothermal therapy (PTT) is considered an up-and-coming candidate for cancer treatment owing to its low invasiveness and ease of implementation. Nevertheless, single PTT in the first transparency (NIR-I, 750-1000 nm) biowindows is often insufficient to eliminate tumor cells due to light scattering and absorption at the tumor site. Therefore, the rational design of multifunctional nanocomposites for multimodal combination therapies based on PTT is attractive for improving treatment efficacy while reducing drug resistance and adverse reactions. Herein, we report a smart multifunctional nanocomposite DOX-Mo<sub>2</sub>C-PAA/Apt-M (DMPM) based on molybdenum carbide (Mo<sub>2</sub>C) MXene for active targeted photothermal-chemotherapy in the second transparency (NIR-II, 1000-1350 nm) biowindows. This nanocomposite effectively absorbed light and converted it into heat, achieving a photothermal conversion efficiency of 38.64% under NIR-II laser irradiation. Meanwhile, the DMPM nanocomposite exhibited pH and laser dual-stimuli-triggered doxorubicin (DOX) release in the tumor microenvironment. Furthermore, DMPM could effectively target MCF-7 solid tumors, significantly improving therapeutic efficacy. <i>In vitro</i> and <i>in vivo</i> studies confirmed that DMPM triggered significant cellular killing and tumor eradication without systemic toxicity. Our work not only presents a new approach for multimode cancer treatment but also expands the application of Mo<sub>2</sub>C MXene in the biomedical field.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"3307-3317\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.5c00403\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00403","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Smart Nanocomposite Based on Mo2C MXene for Active Targeted Photothermal-Chemotherapy of Cancer in NIR-II Biowindows.
As a novel cancer treatment method, photothermal therapy (PTT) is considered an up-and-coming candidate for cancer treatment owing to its low invasiveness and ease of implementation. Nevertheless, single PTT in the first transparency (NIR-I, 750-1000 nm) biowindows is often insufficient to eliminate tumor cells due to light scattering and absorption at the tumor site. Therefore, the rational design of multifunctional nanocomposites for multimodal combination therapies based on PTT is attractive for improving treatment efficacy while reducing drug resistance and adverse reactions. Herein, we report a smart multifunctional nanocomposite DOX-Mo2C-PAA/Apt-M (DMPM) based on molybdenum carbide (Mo2C) MXene for active targeted photothermal-chemotherapy in the second transparency (NIR-II, 1000-1350 nm) biowindows. This nanocomposite effectively absorbed light and converted it into heat, achieving a photothermal conversion efficiency of 38.64% under NIR-II laser irradiation. Meanwhile, the DMPM nanocomposite exhibited pH and laser dual-stimuli-triggered doxorubicin (DOX) release in the tumor microenvironment. Furthermore, DMPM could effectively target MCF-7 solid tumors, significantly improving therapeutic efficacy. In vitro and in vivo studies confirmed that DMPM triggered significant cellular killing and tumor eradication without systemic toxicity. Our work not only presents a new approach for multimode cancer treatment but also expands the application of Mo2C MXene in the biomedical field.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture