含过渡金属配合物的亚硝基r盐的合成、表征及生物潜力。

IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Saddam Hussain, Mehreen Zafar, Nauman Ali, Takashiro Akitsu, Waseem Hassan
{"title":"含过渡金属配合物的亚硝基r盐的合成、表征及生物潜力。","authors":"Saddam Hussain, Mehreen Zafar, Nauman Ali, Takashiro Akitsu, Waseem Hassan","doi":"10.1007/s10534-025-00698-2","DOIUrl":null,"url":null,"abstract":"<p><p>Coordination complexes exhibited interesting potentials in different fields such as medical, industrial, pharmaceutical, and analytical. They possess versatile biological applications in drugs synthesis, extraction of noble metals like silver and gold from their ores and in metals purification. In current project we aim to synthesized and characterized transition metal complexes like Mn, Fe, Co, Ni, Cu and Zn using Nitroso-R Salt as a ligand. This study presents a novel approach to develop stable metal complexes using Nitroso R Salt, a ligand comprising nitrosyl, hydroxyl, and sulfonate groups. This study offers a combined analysis of both chemical and functional properties, which was not commonly investigated with NRS, by combining biological screening with thorough structural characterizations (FTIR, CHN, XRD and UV). The complexes were then subjected to various tests to explore their deoxyribose degradation inhibition potential, antioxidant and antimicrobial potential. Copper and Zinc Complexes showed good potential 173 and 182% against iron at 100 mM. The highest potential was recorded for Nickel complex potential 2, 7 and 14% against H<sub>2</sub>O<sub>2</sub>, Fe (II) and in combine form. It was further confirmed respectively by antioxidant DPPH assay. Ligand and complexes showed good inhibitory potential by showing 18.66, 39.32, 38.22, 28.89, 20.71, 19.14 and 28.89% for NRS, Iron, Cobalt, Nickel, Zinc, Copper and Manganese complexes at high concentration of 200uM, respectively. The complexes showed promising antibacterial and antioxidant properties. Nickel complexes demonstrated a strong inhibition against reactive species, but copper and zinc complexes showed a notably high antioxidant capacity. Effective inhibitory zones were found in antimicrobial testing, especially for Fe, Mn, Co, and Cu complexes against Klebsiella pneumoniae and Bacillus subtilis. However, further studies are needed to examine the exact mechanisms of action of these discoveries, which point to possible biomedical uses.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization and biological potential of nitroso-R salt with transition metal complexes.\",\"authors\":\"Saddam Hussain, Mehreen Zafar, Nauman Ali, Takashiro Akitsu, Waseem Hassan\",\"doi\":\"10.1007/s10534-025-00698-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coordination complexes exhibited interesting potentials in different fields such as medical, industrial, pharmaceutical, and analytical. They possess versatile biological applications in drugs synthesis, extraction of noble metals like silver and gold from their ores and in metals purification. In current project we aim to synthesized and characterized transition metal complexes like Mn, Fe, Co, Ni, Cu and Zn using Nitroso-R Salt as a ligand. This study presents a novel approach to develop stable metal complexes using Nitroso R Salt, a ligand comprising nitrosyl, hydroxyl, and sulfonate groups. This study offers a combined analysis of both chemical and functional properties, which was not commonly investigated with NRS, by combining biological screening with thorough structural characterizations (FTIR, CHN, XRD and UV). The complexes were then subjected to various tests to explore their deoxyribose degradation inhibition potential, antioxidant and antimicrobial potential. Copper and Zinc Complexes showed good potential 173 and 182% against iron at 100 mM. The highest potential was recorded for Nickel complex potential 2, 7 and 14% against H<sub>2</sub>O<sub>2</sub>, Fe (II) and in combine form. It was further confirmed respectively by antioxidant DPPH assay. Ligand and complexes showed good inhibitory potential by showing 18.66, 39.32, 38.22, 28.89, 20.71, 19.14 and 28.89% for NRS, Iron, Cobalt, Nickel, Zinc, Copper and Manganese complexes at high concentration of 200uM, respectively. The complexes showed promising antibacterial and antioxidant properties. Nickel complexes demonstrated a strong inhibition against reactive species, but copper and zinc complexes showed a notably high antioxidant capacity. Effective inhibitory zones were found in antimicrobial testing, especially for Fe, Mn, Co, and Cu complexes against Klebsiella pneumoniae and Bacillus subtilis. However, further studies are needed to examine the exact mechanisms of action of these discoveries, which point to possible biomedical uses.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-025-00698-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00698-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

配合物在医学、工业、制药和分析等不同领域显示出令人感兴趣的潜力。它们在药物合成、从矿石中提取贵金属(如银和金)以及金属净化方面具有广泛的生物应用。本项目拟以亚硝基r盐为配体合成并表征Mn、Fe、Co、Ni、Cu、Zn等过渡金属配合物。本研究提出了一种利用亚硝基R盐开发稳定金属配合物的新方法,亚硝基R盐是一种由亚硝基、羟基和磺酸基组成的配体。本研究通过结合生物筛选和全面的结构表征(FTIR, CHN, XRD和UV),提供了化学和功能特性的综合分析,这是NRS通常不研究的。然后对配合物进行各种测试,以探索其脱氧核糖降解抑制潜力,抗氧化和抗菌潜力。铜和锌配合物在100 mM时对铁的电位分别为173和182%,镍配合物对H2O2、Fe (II)和结合态的电位分别为2、7和14%。通过抗氧化DPPH实验进一步证实。配体和配合物在高浓度200uM下对NRS、铁、钴、镍、锌、铜和锰配合物的抑制率分别为18.66、39.32、38.22、28.89、20.71、19.14和28.89%。该配合物具有良好的抗菌和抗氧化性能。镍配合物对活性物质有较强的抑制作用,而铜和锌配合物则表现出较强的抗氧化能力。在抗菌试验中发现了有效的抑制区,特别是铁、锰、钴和铜配合物对肺炎克雷伯菌和枯草芽孢杆菌的抑制作用。然而,需要进一步的研究来检查这些发现的确切作用机制,这些发现指向可能的生物医学用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, characterization and biological potential of nitroso-R salt with transition metal complexes.

Coordination complexes exhibited interesting potentials in different fields such as medical, industrial, pharmaceutical, and analytical. They possess versatile biological applications in drugs synthesis, extraction of noble metals like silver and gold from their ores and in metals purification. In current project we aim to synthesized and characterized transition metal complexes like Mn, Fe, Co, Ni, Cu and Zn using Nitroso-R Salt as a ligand. This study presents a novel approach to develop stable metal complexes using Nitroso R Salt, a ligand comprising nitrosyl, hydroxyl, and sulfonate groups. This study offers a combined analysis of both chemical and functional properties, which was not commonly investigated with NRS, by combining biological screening with thorough structural characterizations (FTIR, CHN, XRD and UV). The complexes were then subjected to various tests to explore their deoxyribose degradation inhibition potential, antioxidant and antimicrobial potential. Copper and Zinc Complexes showed good potential 173 and 182% against iron at 100 mM. The highest potential was recorded for Nickel complex potential 2, 7 and 14% against H2O2, Fe (II) and in combine form. It was further confirmed respectively by antioxidant DPPH assay. Ligand and complexes showed good inhibitory potential by showing 18.66, 39.32, 38.22, 28.89, 20.71, 19.14 and 28.89% for NRS, Iron, Cobalt, Nickel, Zinc, Copper and Manganese complexes at high concentration of 200uM, respectively. The complexes showed promising antibacterial and antioxidant properties. Nickel complexes demonstrated a strong inhibition against reactive species, but copper and zinc complexes showed a notably high antioxidant capacity. Effective inhibitory zones were found in antimicrobial testing, especially for Fe, Mn, Co, and Cu complexes against Klebsiella pneumoniae and Bacillus subtilis. However, further studies are needed to examine the exact mechanisms of action of these discoveries, which point to possible biomedical uses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometals
Biometals 生物-生化与分子生物学
CiteScore
5.90
自引率
8.60%
发文量
111
审稿时长
3 months
期刊介绍: BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of: - metal ions - metal chelates, - siderophores, - metal-containing proteins - biominerals in all biosystems. - BioMetals rapidly publishes original articles and reviews. BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信