噬菌体/纳米颗粒鸡尾酒的生物相容性和环境友好的抗菌治疗。

IF 4.3 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mateusz Wdowiak, Sada Raza, Mateusz Grotek, Rafał Zbonikowski, Julita Nowakowska, Maria Doligalska, Ningjing Cai, Zhi Luo, Jan Paczesny
{"title":"噬菌体/纳米颗粒鸡尾酒的生物相容性和环境友好的抗菌治疗。","authors":"Mateusz Wdowiak, Sada Raza, Mateusz Grotek, Rafał Zbonikowski, Julita Nowakowska, Maria Doligalska, Ningjing Cai, Zhi Luo, Jan Paczesny","doi":"10.1007/s00253-025-13526-x","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance continues to rise, necessitating alternative strategies. Bacteriophages have emerged as promising natural antibacterial agents, offering a targeted approach to combating bacterial infections. Combining bacteriophages with nanoparticles presents a novel approach that could enhance antibacterial potency while reducing the risk of resistance. While phage/antibiotic cocktails are widely explored to enhance antibacterial efficacy and prevent resistance, research on phage/nanoparticle combinations remains limited. We explore the synergy between green tea extract-capped silver nanoparticles (G-TeaNPs) and bacteriophages in combating pathogenic bacteria (methicillin-resistant Staphylococcus aureus, Salmonella enterica). G-TeaNPs show minimal antiphage activity, ensuring compatibility in phage-NP formulations. These combinations significantly reduce bacterial counts in a short time (only 3 h), e.g., S. aureus survival is around 30% after incubation with just 0.001 mg/mL of G-TeaNPs, while G-TeaNPs and phages alone result in around 80% and 70% survival, respectively. Cytotoxicity tests against eukaryotic 3T3 NIH fibroblast cells confirm biocompatibility at effective concentrations. Additionally, we examine G-TeaNPs' impact on the free-living protist Acanthamoeba castellanii. Both green tea extract and G-TeaNPs can reduce A. castellanii cell counts by 80%, but only at high concentrations. Microscopy revealed nanoparticle uptake by amoebae, causing intracellular accumulation and vacuolization, while green tea extract induced similar changes without uptake. Our findings highlight G-TeaNPs as safe, effective agents in phage/nanoparticle antibacterial formulations with dual antimicrobial and amoebicidal properties for therapeutic and environmental applications. KEYPOINTS: • Silver nanoparticles synthesized with tea extracts (G-TeaNPs) have a minimal effect on the tested viruses. • Combining G-TeaNP with bacteriophages offers new-generation antibacterial cocktails. • Green tea extracts and AgNPs present concentration-dependent anti-amoebic activity.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"129"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122614/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phage/nanoparticle cocktails for a biocompatible and environmentally friendly antibacterial therapy.\",\"authors\":\"Mateusz Wdowiak, Sada Raza, Mateusz Grotek, Rafał Zbonikowski, Julita Nowakowska, Maria Doligalska, Ningjing Cai, Zhi Luo, Jan Paczesny\",\"doi\":\"10.1007/s00253-025-13526-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibiotic resistance continues to rise, necessitating alternative strategies. Bacteriophages have emerged as promising natural antibacterial agents, offering a targeted approach to combating bacterial infections. Combining bacteriophages with nanoparticles presents a novel approach that could enhance antibacterial potency while reducing the risk of resistance. While phage/antibiotic cocktails are widely explored to enhance antibacterial efficacy and prevent resistance, research on phage/nanoparticle combinations remains limited. We explore the synergy between green tea extract-capped silver nanoparticles (G-TeaNPs) and bacteriophages in combating pathogenic bacteria (methicillin-resistant Staphylococcus aureus, Salmonella enterica). G-TeaNPs show minimal antiphage activity, ensuring compatibility in phage-NP formulations. These combinations significantly reduce bacterial counts in a short time (only 3 h), e.g., S. aureus survival is around 30% after incubation with just 0.001 mg/mL of G-TeaNPs, while G-TeaNPs and phages alone result in around 80% and 70% survival, respectively. Cytotoxicity tests against eukaryotic 3T3 NIH fibroblast cells confirm biocompatibility at effective concentrations. Additionally, we examine G-TeaNPs' impact on the free-living protist Acanthamoeba castellanii. Both green tea extract and G-TeaNPs can reduce A. castellanii cell counts by 80%, but only at high concentrations. Microscopy revealed nanoparticle uptake by amoebae, causing intracellular accumulation and vacuolization, while green tea extract induced similar changes without uptake. Our findings highlight G-TeaNPs as safe, effective agents in phage/nanoparticle antibacterial formulations with dual antimicrobial and amoebicidal properties for therapeutic and environmental applications. KEYPOINTS: • Silver nanoparticles synthesized with tea extracts (G-TeaNPs) have a minimal effect on the tested viruses. • Combining G-TeaNP with bacteriophages offers new-generation antibacterial cocktails. • Green tea extracts and AgNPs present concentration-dependent anti-amoebic activity.</p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"129\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122614/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00253-025-13526-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13526-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性持续上升,需要采取替代策略。噬菌体已经成为一种很有前途的天然抗菌剂,为对抗细菌感染提供了一种有针对性的方法。将噬菌体与纳米颗粒结合提出了一种新的方法,可以增强抗菌效力,同时降低耐药性的风险。虽然噬菌体/抗生素鸡尾酒被广泛探索以提高抗菌效果和预防耐药性,但噬菌体/纳米颗粒组合的研究仍然有限。我们探索了绿茶提取物覆盖的银纳米颗粒(G-TeaNPs)和噬菌体在对抗致病菌(耐甲氧西林金黄色葡萄球菌,肠沙门氏菌)中的协同作用。G-TeaNPs表现出最小的抗噬菌体活性,确保了噬菌体np制剂的兼容性。这些组合在短时间内(仅3小时)显著减少细菌计数,例如,仅用0.001 mg/mL G-TeaNPs孵卵后,金黄色葡萄球菌的存活率约为30%,而单独使用G-TeaNPs和噬菌体的存活率分别约为80%和70%。对真核3T3 NIH成纤维细胞的细胞毒性试验证实了有效浓度下的生物相容性。此外,我们还研究了G-TeaNPs对自由生活的原生动物棘阿米巴的影响。绿茶提取物和G-TeaNPs都能使castellanii细胞计数减少80%,但仅在高浓度时。显微镜显示纳米颗粒被变形虫摄取,引起细胞内积聚和空泡化,而绿茶提取物诱导了类似的变化,但没有摄取。我们的研究结果强调了G-TeaNPs是噬菌体/纳米颗粒抗菌制剂中安全有效的药物,具有双重抗菌和杀阿米巴特性,可用于治疗和环境应用。•用茶提取物合成的银纳米颗粒(G-TeaNPs)对测试病毒的影响很小。•结合G-TeaNP与噬菌体提供新一代抗菌鸡尾酒。•绿茶提取物和AgNPs具有浓度依赖性的抗阿米巴活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phage/nanoparticle cocktails for a biocompatible and environmentally friendly antibacterial therapy.

Antibiotic resistance continues to rise, necessitating alternative strategies. Bacteriophages have emerged as promising natural antibacterial agents, offering a targeted approach to combating bacterial infections. Combining bacteriophages with nanoparticles presents a novel approach that could enhance antibacterial potency while reducing the risk of resistance. While phage/antibiotic cocktails are widely explored to enhance antibacterial efficacy and prevent resistance, research on phage/nanoparticle combinations remains limited. We explore the synergy between green tea extract-capped silver nanoparticles (G-TeaNPs) and bacteriophages in combating pathogenic bacteria (methicillin-resistant Staphylococcus aureus, Salmonella enterica). G-TeaNPs show minimal antiphage activity, ensuring compatibility in phage-NP formulations. These combinations significantly reduce bacterial counts in a short time (only 3 h), e.g., S. aureus survival is around 30% after incubation with just 0.001 mg/mL of G-TeaNPs, while G-TeaNPs and phages alone result in around 80% and 70% survival, respectively. Cytotoxicity tests against eukaryotic 3T3 NIH fibroblast cells confirm biocompatibility at effective concentrations. Additionally, we examine G-TeaNPs' impact on the free-living protist Acanthamoeba castellanii. Both green tea extract and G-TeaNPs can reduce A. castellanii cell counts by 80%, but only at high concentrations. Microscopy revealed nanoparticle uptake by amoebae, causing intracellular accumulation and vacuolization, while green tea extract induced similar changes without uptake. Our findings highlight G-TeaNPs as safe, effective agents in phage/nanoparticle antibacterial formulations with dual antimicrobial and amoebicidal properties for therapeutic and environmental applications. KEYPOINTS: • Silver nanoparticles synthesized with tea extracts (G-TeaNPs) have a minimal effect on the tested viruses. • Combining G-TeaNP with bacteriophages offers new-generation antibacterial cocktails. • Green tea extracts and AgNPs present concentration-dependent anti-amoebic activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信