蘑菇体中的混合神经网络驱动果蝇的嗅觉偏好

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Li-Shan Cheng, Ching-Che Charng, Ruei-Huang Chen, Kuan-Lin Feng, Ann-Shyn Chiang, Chung-Chuan Lo, Ting-Kuo Lee
{"title":"蘑菇体中的混合神经网络驱动果蝇的嗅觉偏好","authors":"Li-Shan Cheng,&nbsp;Ching-Che Charng,&nbsp;Ruei-Huang Chen,&nbsp;Kuan-Lin Feng,&nbsp;Ann-Shyn Chiang,&nbsp;Chung-Chuan Lo,&nbsp;Ting-Kuo Lee","doi":"10.1126/sciadv.adq9893","DOIUrl":null,"url":null,"abstract":"<div >In <i>Drosophila melanogaster</i>, olfactory encoding in the mushroom body (MB) involves thousands of Kenyon cells (KCs) processing inputs from hundreds of projection neurons (PNs). Recent data challenge the notion of random PN-to-KC connectivity, revealing preferential connections between food-related PNs and specific KCs. Our study further uncovers a broader picture—an L-shaped hybrid network, supported by spatial patterning: Food-related PNs diverge across KC classes, whereas pheromone-sensitive PNs converge on γ KCs. α/β KCs specialize in food odors, whereas γ KCs integrate diverse inputs. Such spatial arrangement extends further to the antennal lobe (AL) and lateral horn (LH), shaping a systematic olfactory landscape. Moreover, our functional validations align with computational predictions of KC odor encoding based on the hybrid connectivity, correlating PN-KC activity with behavioral preferences. In addition, our simulations showcase the network’s augmented sensitivity and precise discrimination abilities, underscoring the computational benefits of this hybrid architecture in olfactory processing.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 22","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq9893","citationCount":"0","resultStr":"{\"title\":\"Hybrid neural networks in the mushroom body drive olfactory preference in Drosophila\",\"authors\":\"Li-Shan Cheng,&nbsp;Ching-Che Charng,&nbsp;Ruei-Huang Chen,&nbsp;Kuan-Lin Feng,&nbsp;Ann-Shyn Chiang,&nbsp;Chung-Chuan Lo,&nbsp;Ting-Kuo Lee\",\"doi\":\"10.1126/sciadv.adq9893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >In <i>Drosophila melanogaster</i>, olfactory encoding in the mushroom body (MB) involves thousands of Kenyon cells (KCs) processing inputs from hundreds of projection neurons (PNs). Recent data challenge the notion of random PN-to-KC connectivity, revealing preferential connections between food-related PNs and specific KCs. Our study further uncovers a broader picture—an L-shaped hybrid network, supported by spatial patterning: Food-related PNs diverge across KC classes, whereas pheromone-sensitive PNs converge on γ KCs. α/β KCs specialize in food odors, whereas γ KCs integrate diverse inputs. Such spatial arrangement extends further to the antennal lobe (AL) and lateral horn (LH), shaping a systematic olfactory landscape. Moreover, our functional validations align with computational predictions of KC odor encoding based on the hybrid connectivity, correlating PN-KC activity with behavioral preferences. In addition, our simulations showcase the network’s augmented sensitivity and precise discrimination abilities, underscoring the computational benefits of this hybrid architecture in olfactory processing.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 22\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adq9893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq9893\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq9893","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在黑腹果蝇(Drosophila melanogaster)中,蘑菇体(MB)的嗅觉编码涉及数千个Kenyon细胞(KCs)处理来自数百个投射神经元(PNs)的输入。最近的数据挑战了随机pn到kc连接的概念,揭示了食物相关pn和特定KCs之间的优先连接。我们的研究进一步揭示了一个更广泛的图景——一个由空间模式支持的l形混合网络:食物相关的PNs在KC类别中分散,而信息素敏感的PNs集中在γ KCs上。α/β KCs专注于食物气味,而γ KCs则整合了多种输入。这种空间安排进一步延伸到触角叶(AL)和侧角(LH),形成一个系统的嗅觉景观。此外,我们的功能验证与基于混合连接的KC气味编码的计算预测一致,将PN-KC活动与行为偏好相关联。此外,我们的模拟显示了网络增强的灵敏度和精确的识别能力,强调了这种混合架构在嗅觉处理中的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid neural networks in the mushroom body drive olfactory preference in Drosophila

Hybrid neural networks in the mushroom body drive olfactory preference in Drosophila
In Drosophila melanogaster, olfactory encoding in the mushroom body (MB) involves thousands of Kenyon cells (KCs) processing inputs from hundreds of projection neurons (PNs). Recent data challenge the notion of random PN-to-KC connectivity, revealing preferential connections between food-related PNs and specific KCs. Our study further uncovers a broader picture—an L-shaped hybrid network, supported by spatial patterning: Food-related PNs diverge across KC classes, whereas pheromone-sensitive PNs converge on γ KCs. α/β KCs specialize in food odors, whereas γ KCs integrate diverse inputs. Such spatial arrangement extends further to the antennal lobe (AL) and lateral horn (LH), shaping a systematic olfactory landscape. Moreover, our functional validations align with computational predictions of KC odor encoding based on the hybrid connectivity, correlating PN-KC activity with behavioral preferences. In addition, our simulations showcase the network’s augmented sensitivity and precise discrimination abilities, underscoring the computational benefits of this hybrid architecture in olfactory processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信