Bon-Hee Gu, Ho Young Jung, Chae-Yun Rim, Tae-Yong Kim, Sang-Jin Lee, Doo Young Choi, Han-Ki Park, Myunghoo Kim
{"title":"人类粪便微生物组移植策略在小鼠模型中的比较定植能力","authors":"Bon-Hee Gu, Ho Young Jung, Chae-Yun Rim, Tae-Yong Kim, Sang-Jin Lee, Doo Young Choi, Han-Ki Park, Myunghoo Kim","doi":"10.1111/1751-7915.70173","DOIUrl":null,"url":null,"abstract":"<p>The gut microbiome plays a crucial role in maintaining intestinal homeostasis and influencing immune-mediated diseases. Human faecal microbiota transplantation (FMT) is often employed in murine models to investigate the role of human microbes in disease regulation, but methods for effective colonisation require refinement. This study aimed to assess the colonisation efficiency of human microbiota in a murine model using FMT with human faeces, focusing particularly on the impact of gut microbiota depletion via polyethylene glycol (PEG) and comparing oral-gastric gavage with enema administration routes. Our findings revealed that PEG-induced depletion enhanced human microbiome colonisation in mice. Oral-gastric gavage prolonged colonisation, while enema administration facilitated quicker resolution of dysbiosis, both inducing selective human microbial colonisation in a time-dependent manner. Notably, genera such as <i>Bacteroides</i>, <i>Blautia</i>, <i>Medicaternibacter</i> and <i>Bifidobacteria</i> were successfully colonised, whereas <i>Roseburia</i>, <i>Anaerostipes</i>, <i>Anaerobutyricum</i> and <i>Faecalibacterium</i> failed to establish in the murine gut post-FMT. These findings highlight the challenges of replicating human gut microbiota in murine models and underscore the importance of selecting appropriate FMT methods based on desired outcomes. This study provides valuable insights into the colonisation dynamics of human microbiota in mice, contributing to the development of more effective FMT strategies for disease treatment.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 6","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70173","citationCount":"0","resultStr":"{\"title\":\"Comparative Colonisation Ability of Human Faecal Microbiome Transplantation Strategies in Murine Models\",\"authors\":\"Bon-Hee Gu, Ho Young Jung, Chae-Yun Rim, Tae-Yong Kim, Sang-Jin Lee, Doo Young Choi, Han-Ki Park, Myunghoo Kim\",\"doi\":\"10.1111/1751-7915.70173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gut microbiome plays a crucial role in maintaining intestinal homeostasis and influencing immune-mediated diseases. Human faecal microbiota transplantation (FMT) is often employed in murine models to investigate the role of human microbes in disease regulation, but methods for effective colonisation require refinement. This study aimed to assess the colonisation efficiency of human microbiota in a murine model using FMT with human faeces, focusing particularly on the impact of gut microbiota depletion via polyethylene glycol (PEG) and comparing oral-gastric gavage with enema administration routes. Our findings revealed that PEG-induced depletion enhanced human microbiome colonisation in mice. Oral-gastric gavage prolonged colonisation, while enema administration facilitated quicker resolution of dysbiosis, both inducing selective human microbial colonisation in a time-dependent manner. Notably, genera such as <i>Bacteroides</i>, <i>Blautia</i>, <i>Medicaternibacter</i> and <i>Bifidobacteria</i> were successfully colonised, whereas <i>Roseburia</i>, <i>Anaerostipes</i>, <i>Anaerobutyricum</i> and <i>Faecalibacterium</i> failed to establish in the murine gut post-FMT. These findings highlight the challenges of replicating human gut microbiota in murine models and underscore the importance of selecting appropriate FMT methods based on desired outcomes. This study provides valuable insights into the colonisation dynamics of human microbiota in mice, contributing to the development of more effective FMT strategies for disease treatment.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70173\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70173","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Colonisation Ability of Human Faecal Microbiome Transplantation Strategies in Murine Models
The gut microbiome plays a crucial role in maintaining intestinal homeostasis and influencing immune-mediated diseases. Human faecal microbiota transplantation (FMT) is often employed in murine models to investigate the role of human microbes in disease regulation, but methods for effective colonisation require refinement. This study aimed to assess the colonisation efficiency of human microbiota in a murine model using FMT with human faeces, focusing particularly on the impact of gut microbiota depletion via polyethylene glycol (PEG) and comparing oral-gastric gavage with enema administration routes. Our findings revealed that PEG-induced depletion enhanced human microbiome colonisation in mice. Oral-gastric gavage prolonged colonisation, while enema administration facilitated quicker resolution of dysbiosis, both inducing selective human microbial colonisation in a time-dependent manner. Notably, genera such as Bacteroides, Blautia, Medicaternibacter and Bifidobacteria were successfully colonised, whereas Roseburia, Anaerostipes, Anaerobutyricum and Faecalibacterium failed to establish in the murine gut post-FMT. These findings highlight the challenges of replicating human gut microbiota in murine models and underscore the importance of selecting appropriate FMT methods based on desired outcomes. This study provides valuable insights into the colonisation dynamics of human microbiota in mice, contributing to the development of more effective FMT strategies for disease treatment.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes