基于铝掺杂氧化锌和银纳米线复合材料的印刷CO${2}$气体传感器

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Nikhila Patil;Neethu Thomas;Neha Sharma;Parasuraman Swaminathan;P. Sumathi
{"title":"基于铝掺杂氧化锌和银纳米线复合材料的印刷CO${2}$气体传感器","authors":"Nikhila Patil;Neethu Thomas;Neha Sharma;Parasuraman Swaminathan;P. Sumathi","doi":"10.1109/LSENS.2025.3571193","DOIUrl":null,"url":null,"abstract":"Carbon dioxide (CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>) is a significant greenhouse gas and an essential indicator of effective air circulation in enclosed spaces, requiring precise and continuous monitoring. Traditional chemiresistive CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> sensors have high operating temperatures that require external heating elements limiting their applicability in low-power portable electronics. This work demonstrates a miniaturized printed CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> gas sensor, based on aluminum-doped zinc oxide (AZO) and silver nanowire (Ag NW) nanocomposite ink, which operates efficiently at room temperature. The AZO-Ag NW nanocomposite ink is optimized for direct ink writing (DIW) to obtain a uniform printed pattern. The composite ink helps overcome the inherent high resistance of AZO nanostructures by taking advantage of Ag NW's high conductivity and surface reactivity. The sensor shows a quick response time of 19 s and a recovery time of 36 s for 400 ppm CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>. The sensor exhibits a response (R) of 32.5% with a limit of detection of 24.04 ppm, while operating at a low bias of 1 V. The integration of DIW, cost-effective ink formulation, and scalable fabrication is a significant advancement for real-time CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> monitoring at low power.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 6","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aluminum Doped Zinc Oxide and Silver Nanowire Composite Based Printed CO$_{2}$ Gas Sensor\",\"authors\":\"Nikhila Patil;Neethu Thomas;Neha Sharma;Parasuraman Swaminathan;P. Sumathi\",\"doi\":\"10.1109/LSENS.2025.3571193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon dioxide (CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>) is a significant greenhouse gas and an essential indicator of effective air circulation in enclosed spaces, requiring precise and continuous monitoring. Traditional chemiresistive CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> sensors have high operating temperatures that require external heating elements limiting their applicability in low-power portable electronics. This work demonstrates a miniaturized printed CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> gas sensor, based on aluminum-doped zinc oxide (AZO) and silver nanowire (Ag NW) nanocomposite ink, which operates efficiently at room temperature. The AZO-Ag NW nanocomposite ink is optimized for direct ink writing (DIW) to obtain a uniform printed pattern. The composite ink helps overcome the inherent high resistance of AZO nanostructures by taking advantage of Ag NW's high conductivity and surface reactivity. The sensor shows a quick response time of 19 s and a recovery time of 36 s for 400 ppm CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula>. The sensor exhibits a response (R) of 32.5% with a limit of detection of 24.04 ppm, while operating at a low bias of 1 V. The integration of DIW, cost-effective ink formulation, and scalable fabrication is a significant advancement for real-time CO<inline-formula><tex-math>$_{2}$</tex-math></inline-formula> monitoring at low power.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 6\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11006525/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11006525/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳(CO$_{2}$)是一种重要的温室气体,是封闭空间有效空气循环的重要指标,需要精确和连续的监测。传统的化学CO传感器工作温度高,需要外部加热元件,限制了它们在低功耗便携式电子产品中的适用性。本工作展示了一种基于掺铝氧化锌(AZO)和银纳米线(Ag NW)纳米复合油墨的小型化印刷CO${2}$气体传感器,该传感器在室温下有效工作。对AZO-Ag NW纳米复合墨水进行了优化,使其适合直接墨水书写(DIW),以获得均匀的印刷图案。该复合油墨利用Ag NW的高导电性和表面反应性,克服了AZO纳米结构固有的高电阻。该传感器对400 ppm CO的响应时间为19 s,恢复时间为36 s。该传感器的响应(R)为32.5%,检测限为24.04 ppm,工作在1 V的低偏置下。DIW、低成本的油墨配方和可扩展制造的集成是低功耗实时CO监测的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aluminum Doped Zinc Oxide and Silver Nanowire Composite Based Printed CO$_{2}$ Gas Sensor
Carbon dioxide (CO$_{2}$) is a significant greenhouse gas and an essential indicator of effective air circulation in enclosed spaces, requiring precise and continuous monitoring. Traditional chemiresistive CO$_{2}$ sensors have high operating temperatures that require external heating elements limiting their applicability in low-power portable electronics. This work demonstrates a miniaturized printed CO$_{2}$ gas sensor, based on aluminum-doped zinc oxide (AZO) and silver nanowire (Ag NW) nanocomposite ink, which operates efficiently at room temperature. The AZO-Ag NW nanocomposite ink is optimized for direct ink writing (DIW) to obtain a uniform printed pattern. The composite ink helps overcome the inherent high resistance of AZO nanostructures by taking advantage of Ag NW's high conductivity and surface reactivity. The sensor shows a quick response time of 19 s and a recovery time of 36 s for 400 ppm CO$_{2}$. The sensor exhibits a response (R) of 32.5% with a limit of detection of 24.04 ppm, while operating at a low bias of 1 V. The integration of DIW, cost-effective ink formulation, and scalable fabrication is a significant advancement for real-time CO$_{2}$ monitoring at low power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信