Harshal Janjani;Tanmay Agarwal;M. P. Gopinath;Vimoh Sharma;S. P. Raja
{"title":"云环境下在线强化学习应用的能量感知调度和任务分配算法设计","authors":"Harshal Janjani;Tanmay Agarwal;M. P. Gopinath;Vimoh Sharma;S. P. Raja","doi":"10.1109/TCSS.2024.3508089","DOIUrl":null,"url":null,"abstract":"With the rapid proliferation of machine learning applications in cloud computing environments, addressing crucial challenges concerning energy efficiency becomes pressing, including addressing the high power consumption of such workloads. In this regard, this work focuses much on the development of an energy-aware scheduling and task assignment algorithm that, while optimizing energy consumption, maintains required performance standards in deploying machine-learning applications in cloud environments. It therefore, pivots on leveraging online reinforcement learning to deduce an optimal planning and allocation strategy. This proposed algorithm leverages the capability of RL in making sequential decisions with the aim of achieving maximum cumulative rewards. The algorithm design and its implementation are examined in detail, considering the nature of workloads and how the computational resources are utilized. The algorithm’s performance is analyzed by looking into different performance metrics that assess the success of the model. All the results indicate that energy-aware scheduling combined with task assignment algorithms are bound to reduce energy consumption by a great margin while meeting the required performance for large-scale workloads. These results hold much promise for the improvement of sustainable cloud computing infrastructures and consequently, to energy-efficient machine learning. The future research directions involve enhancing the proposed algorithm’s generalization capabilities and addressing challenges related to scalability and convergence.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 3","pages":"1218-1232"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Energy-Aware Scheduling and Task Allocation Algorithms for Online Reinforcement Learning Applications in Cloud Environments\",\"authors\":\"Harshal Janjani;Tanmay Agarwal;M. P. Gopinath;Vimoh Sharma;S. P. Raja\",\"doi\":\"10.1109/TCSS.2024.3508089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid proliferation of machine learning applications in cloud computing environments, addressing crucial challenges concerning energy efficiency becomes pressing, including addressing the high power consumption of such workloads. In this regard, this work focuses much on the development of an energy-aware scheduling and task assignment algorithm that, while optimizing energy consumption, maintains required performance standards in deploying machine-learning applications in cloud environments. It therefore, pivots on leveraging online reinforcement learning to deduce an optimal planning and allocation strategy. This proposed algorithm leverages the capability of RL in making sequential decisions with the aim of achieving maximum cumulative rewards. The algorithm design and its implementation are examined in detail, considering the nature of workloads and how the computational resources are utilized. The algorithm’s performance is analyzed by looking into different performance metrics that assess the success of the model. All the results indicate that energy-aware scheduling combined with task assignment algorithms are bound to reduce energy consumption by a great margin while meeting the required performance for large-scale workloads. These results hold much promise for the improvement of sustainable cloud computing infrastructures and consequently, to energy-efficient machine learning. The future research directions involve enhancing the proposed algorithm’s generalization capabilities and addressing challenges related to scalability and convergence.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"12 3\",\"pages\":\"1218-1232\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10803910/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10803910/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Designing Energy-Aware Scheduling and Task Allocation Algorithms for Online Reinforcement Learning Applications in Cloud Environments
With the rapid proliferation of machine learning applications in cloud computing environments, addressing crucial challenges concerning energy efficiency becomes pressing, including addressing the high power consumption of such workloads. In this regard, this work focuses much on the development of an energy-aware scheduling and task assignment algorithm that, while optimizing energy consumption, maintains required performance standards in deploying machine-learning applications in cloud environments. It therefore, pivots on leveraging online reinforcement learning to deduce an optimal planning and allocation strategy. This proposed algorithm leverages the capability of RL in making sequential decisions with the aim of achieving maximum cumulative rewards. The algorithm design and its implementation are examined in detail, considering the nature of workloads and how the computational resources are utilized. The algorithm’s performance is analyzed by looking into different performance metrics that assess the success of the model. All the results indicate that energy-aware scheduling combined with task assignment algorithms are bound to reduce energy consumption by a great margin while meeting the required performance for large-scale workloads. These results hold much promise for the improvement of sustainable cloud computing infrastructures and consequently, to energy-efficient machine learning. The future research directions involve enhancing the proposed algorithm’s generalization capabilities and addressing challenges related to scalability and convergence.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.