云环境下在线强化学习应用的能量感知调度和任务分配算法设计

IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS
Harshal Janjani;Tanmay Agarwal;M. P. Gopinath;Vimoh Sharma;S. P. Raja
{"title":"云环境下在线强化学习应用的能量感知调度和任务分配算法设计","authors":"Harshal Janjani;Tanmay Agarwal;M. P. Gopinath;Vimoh Sharma;S. P. Raja","doi":"10.1109/TCSS.2024.3508089","DOIUrl":null,"url":null,"abstract":"With the rapid proliferation of machine learning applications in cloud computing environments, addressing crucial challenges concerning energy efficiency becomes pressing, including addressing the high power consumption of such workloads. In this regard, this work focuses much on the development of an energy-aware scheduling and task assignment algorithm that, while optimizing energy consumption, maintains required performance standards in deploying machine-learning applications in cloud environments. It therefore, pivots on leveraging online reinforcement learning to deduce an optimal planning and allocation strategy. This proposed algorithm leverages the capability of RL in making sequential decisions with the aim of achieving maximum cumulative rewards. The algorithm design and its implementation are examined in detail, considering the nature of workloads and how the computational resources are utilized. The algorithm’s performance is analyzed by looking into different performance metrics that assess the success of the model. All the results indicate that energy-aware scheduling combined with task assignment algorithms are bound to reduce energy consumption by a great margin while meeting the required performance for large-scale workloads. These results hold much promise for the improvement of sustainable cloud computing infrastructures and consequently, to energy-efficient machine learning. The future research directions involve enhancing the proposed algorithm’s generalization capabilities and addressing challenges related to scalability and convergence.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 3","pages":"1218-1232"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Energy-Aware Scheduling and Task Allocation Algorithms for Online Reinforcement Learning Applications in Cloud Environments\",\"authors\":\"Harshal Janjani;Tanmay Agarwal;M. P. Gopinath;Vimoh Sharma;S. P. Raja\",\"doi\":\"10.1109/TCSS.2024.3508089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid proliferation of machine learning applications in cloud computing environments, addressing crucial challenges concerning energy efficiency becomes pressing, including addressing the high power consumption of such workloads. In this regard, this work focuses much on the development of an energy-aware scheduling and task assignment algorithm that, while optimizing energy consumption, maintains required performance standards in deploying machine-learning applications in cloud environments. It therefore, pivots on leveraging online reinforcement learning to deduce an optimal planning and allocation strategy. This proposed algorithm leverages the capability of RL in making sequential decisions with the aim of achieving maximum cumulative rewards. The algorithm design and its implementation are examined in detail, considering the nature of workloads and how the computational resources are utilized. The algorithm’s performance is analyzed by looking into different performance metrics that assess the success of the model. All the results indicate that energy-aware scheduling combined with task assignment algorithms are bound to reduce energy consumption by a great margin while meeting the required performance for large-scale workloads. These results hold much promise for the improvement of sustainable cloud computing infrastructures and consequently, to energy-efficient machine learning. The future research directions involve enhancing the proposed algorithm’s generalization capabilities and addressing challenges related to scalability and convergence.\",\"PeriodicalId\":13044,\"journal\":{\"name\":\"IEEE Transactions on Computational Social Systems\",\"volume\":\"12 3\",\"pages\":\"1218-1232\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Social Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10803910/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10803910/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

随着云计算环境中机器学习应用的迅速普及,解决能源效率方面的关键挑战变得迫在眉睫,包括解决此类工作负载的高功耗问题。在这方面,这项工作主要集中在能源感知调度和任务分配算法的开发上,该算法在优化能耗的同时,在云环境中部署机器学习应用程序时保持所需的性能标准。因此,它依赖于利用在线强化学习来推断出最优的规划和分配策略。该算法利用强化学习的能力进行顺序决策,以实现最大的累积奖励。考虑到工作负载的性质和如何利用计算资源,对算法设计及其实现进行了详细的研究。通过查看评估模型成功的不同性能指标来分析算法的性能。结果表明,能量感知调度与任务分配算法相结合,在满足大规模工作负载性能要求的前提下,一定能大幅度降低能耗。这些结果为可持续云计算基础设施的改进以及节能机器学习带来了很大的希望。未来的研究方向包括提高算法的泛化能力,解决与可扩展性和收敛性相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Energy-Aware Scheduling and Task Allocation Algorithms for Online Reinforcement Learning Applications in Cloud Environments
With the rapid proliferation of machine learning applications in cloud computing environments, addressing crucial challenges concerning energy efficiency becomes pressing, including addressing the high power consumption of such workloads. In this regard, this work focuses much on the development of an energy-aware scheduling and task assignment algorithm that, while optimizing energy consumption, maintains required performance standards in deploying machine-learning applications in cloud environments. It therefore, pivots on leveraging online reinforcement learning to deduce an optimal planning and allocation strategy. This proposed algorithm leverages the capability of RL in making sequential decisions with the aim of achieving maximum cumulative rewards. The algorithm design and its implementation are examined in detail, considering the nature of workloads and how the computational resources are utilized. The algorithm’s performance is analyzed by looking into different performance metrics that assess the success of the model. All the results indicate that energy-aware scheduling combined with task assignment algorithms are bound to reduce energy consumption by a great margin while meeting the required performance for large-scale workloads. These results hold much promise for the improvement of sustainable cloud computing infrastructures and consequently, to energy-efficient machine learning. The future research directions involve enhancing the proposed algorithm’s generalization capabilities and addressing challenges related to scalability and convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Social Systems
IEEE Transactions on Computational Social Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
10.00
自引率
20.00%
发文量
316
期刊介绍: IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信