Yulin Huang , Hongrui Yang , Rui Wu , Weijian Wang , Mengyuan Gao , Xi Wu , Chaofeng Lü , Guannan Wang
{"title":"软基材上液滴冲击行为的旋转控制","authors":"Yulin Huang , Hongrui Yang , Rui Wu , Weijian Wang , Mengyuan Gao , Xi Wu , Chaofeng Lü , Guannan Wang","doi":"10.1016/j.ijmecsci.2025.110369","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding droplet dynamics is essential for advancing biotechnology and material science. However, studies investigating droplet behavior on rotating soft substrates remain limited. This work addresses this gap by exploring the underlying physical mechanism of deionized water droplet dynamics and transport on rotating soft substrates, providing both experimental insights and theoretical scaling formulations. Unlike research on hard substrates, we introduce a modified maximum spreading factor <span><math><mrow><msub><mi>β</mi><mi>s</mi></msub><mo>∼</mo><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>for droplets impacting stationary soft substrates by incorporating substrate flexibility, which aligns precisely with our experimental data. For rotating soft substrates, the interplay between flexibility and air viscosity results in highly asymmetric wetting behaviors. Through theoretical and experimental analyses, we establish a scaling law for the contact area <span><math><mrow><msup><mrow><mo>(</mo><mrow><msub><mi>β</mi><mrow><mi>max</mi><mo>−</mo><mi>T</mi></mrow></msub><msub><mi>β</mi><mrow><mi>max</mi><mo>−</mo><mi>R</mi></mrow></msub></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>∼</mo><mi>C</mi><msup><mrow><mi>a</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>and an inverse scaling law <span><math><mrow><msub><mi>τ</mi><mi>s</mi></msub><mo>∼</mo><mi>C</mi><msup><mrow><mi>a</mi></mrow><mrow><mrow><mo>−</mo><mn>1</mn></mrow><mo>/</mo><mn>6</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mrow><mo>−</mo><mn>1</mn></mrow><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span> for the spreading time. The use of rotating substrates can reduce spreading time by as much as 24 %, showing its potential for enhanced droplet control. Furthermore, we identify a critical rotational speed Bo<sub>r,c</sub> that triggers two distinct droplet impact behaviors, independent of impact velocity. These findings provide insights for control and directional transport in droplet screening and sorting applications.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"299 ","pages":"Article 110369"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational control of droplet impact behavior on a soft substrate\",\"authors\":\"Yulin Huang , Hongrui Yang , Rui Wu , Weijian Wang , Mengyuan Gao , Xi Wu , Chaofeng Lü , Guannan Wang\",\"doi\":\"10.1016/j.ijmecsci.2025.110369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding droplet dynamics is essential for advancing biotechnology and material science. However, studies investigating droplet behavior on rotating soft substrates remain limited. This work addresses this gap by exploring the underlying physical mechanism of deionized water droplet dynamics and transport on rotating soft substrates, providing both experimental insights and theoretical scaling formulations. Unlike research on hard substrates, we introduce a modified maximum spreading factor <span><math><mrow><msub><mi>β</mi><mi>s</mi></msub><mo>∼</mo><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>for droplets impacting stationary soft substrates by incorporating substrate flexibility, which aligns precisely with our experimental data. For rotating soft substrates, the interplay between flexibility and air viscosity results in highly asymmetric wetting behaviors. Through theoretical and experimental analyses, we establish a scaling law for the contact area <span><math><mrow><msup><mrow><mo>(</mo><mrow><msub><mi>β</mi><mrow><mi>max</mi><mo>−</mo><mi>T</mi></mrow></msub><msub><mi>β</mi><mrow><mi>max</mi><mo>−</mo><mi>R</mi></mrow></msub></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>∼</mo><mi>C</mi><msup><mrow><mi>a</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span>and an inverse scaling law <span><math><mrow><msub><mi>τ</mi><mi>s</mi></msub><mo>∼</mo><mi>C</mi><msup><mrow><mi>a</mi></mrow><mrow><mrow><mo>−</mo><mn>1</mn></mrow><mo>/</mo><mn>6</mn></mrow></msup><msup><mrow><mo>(</mo><mrow><mtext>We</mtext><mo>−</mo><mi>k</mi></mrow><mo>)</mo></mrow><mrow><mrow><mo>−</mo><mn>1</mn></mrow><mo>/</mo><mn>4</mn></mrow></msup></mrow></math></span> for the spreading time. The use of rotating substrates can reduce spreading time by as much as 24 %, showing its potential for enhanced droplet control. Furthermore, we identify a critical rotational speed Bo<sub>r,c</sub> that triggers two distinct droplet impact behaviors, independent of impact velocity. These findings provide insights for control and directional transport in droplet screening and sorting applications.</div></div>\",\"PeriodicalId\":56287,\"journal\":{\"name\":\"International Journal of Mechanical Sciences\",\"volume\":\"299 \",\"pages\":\"Article 110369\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020740325004552\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325004552","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Rotational control of droplet impact behavior on a soft substrate
Understanding droplet dynamics is essential for advancing biotechnology and material science. However, studies investigating droplet behavior on rotating soft substrates remain limited. This work addresses this gap by exploring the underlying physical mechanism of deionized water droplet dynamics and transport on rotating soft substrates, providing both experimental insights and theoretical scaling formulations. Unlike research on hard substrates, we introduce a modified maximum spreading factor for droplets impacting stationary soft substrates by incorporating substrate flexibility, which aligns precisely with our experimental data. For rotating soft substrates, the interplay between flexibility and air viscosity results in highly asymmetric wetting behaviors. Through theoretical and experimental analyses, we establish a scaling law for the contact area and an inverse scaling law for the spreading time. The use of rotating substrates can reduce spreading time by as much as 24 %, showing its potential for enhanced droplet control. Furthermore, we identify a critical rotational speed Bor,c that triggers two distinct droplet impact behaviors, independent of impact velocity. These findings provide insights for control and directional transport in droplet screening and sorting applications.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.