亚临界和超临界联合通道星形Saint-Venant网络的边界稳定

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Amaury Hayat , Yating Hu , Peipei Shang
{"title":"亚临界和超临界联合通道星形Saint-Venant网络的边界稳定","authors":"Amaury Hayat ,&nbsp;Yating Hu ,&nbsp;Peipei Shang","doi":"10.1016/j.sysconle.2025.106135","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we consider the boundary stabilization of a star-shaped water flow network composed by <span><math><mi>n</mi></math></span> (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) channels. Each channel is modeled by Saint-Venant equations with arbitrary friction and slope. Among which, two channels are in supercritical regime, while the remaining <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span> channels are in subcritical regime. We show that in this case, one only needs to apply a static feedback control at the inlet of a supercritical channel to achieve the exponential stability of the non-uniform steady-states in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. The main tool we employ is the Lyapunov approach. To validate our theoretical results, a numerical illustration is also given.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"203 ","pages":"Article 106135"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary stabilization of star-shaped Saint-Venant networks with combined subcritical and supercritical channels\",\"authors\":\"Amaury Hayat ,&nbsp;Yating Hu ,&nbsp;Peipei Shang\",\"doi\":\"10.1016/j.sysconle.2025.106135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we consider the boundary stabilization of a star-shaped water flow network composed by <span><math><mi>n</mi></math></span> (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) channels. Each channel is modeled by Saint-Venant equations with arbitrary friction and slope. Among which, two channels are in supercritical regime, while the remaining <span><math><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span> channels are in subcritical regime. We show that in this case, one only needs to apply a static feedback control at the inlet of a supercritical channel to achieve the exponential stability of the non-uniform steady-states in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. The main tool we employ is the Lyapunov approach. To validate our theoretical results, a numerical illustration is also given.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"203 \",\"pages\":\"Article 106135\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125001173\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125001173","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由n (n≥3)个通道组成的星形水流网络的边界稳定问题。每个通道都由具有任意摩擦和斜率的圣维南方程建模。其中2个通道处于超临界状态,其余n - 2个通道处于亚临界状态。我们表明,在这种情况下,人们只需要在超临界通道的入口应用静态反馈控制,以实现H2范数中非均匀稳态的指数稳定性。我们使用的主要工具是李亚普诺夫方法。为了验证我们的理论结果,还给出了一个数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary stabilization of star-shaped Saint-Venant networks with combined subcritical and supercritical channels
In this work, we consider the boundary stabilization of a star-shaped water flow network composed by n (n3) channels. Each channel is modeled by Saint-Venant equations with arbitrary friction and slope. Among which, two channels are in supercritical regime, while the remaining n2 channels are in subcritical regime. We show that in this case, one only needs to apply a static feedback control at the inlet of a supercritical channel to achieve the exponential stability of the non-uniform steady-states in the H2 norm. The main tool we employ is the Lyapunov approach. To validate our theoretical results, a numerical illustration is also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信