一种用于工程可拉伸电子元件的多层模板剥离转移印刷方法

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-05-30 DOI:10.1039/D5NR01652E
Léo Sifringer, Daniel Laguna, Michel Sommer and János Vörös
{"title":"一种用于工程可拉伸电子元件的多层模板剥离转移印刷方法","authors":"Léo Sifringer, Daniel Laguna, Michel Sommer and János Vörös","doi":"10.1039/D5NR01652E","DOIUrl":null,"url":null,"abstract":"<p >Stretchable electronics require sophisticated fabrication strategies to achieve both high electrical performance and mechanical compliance. While various approaches exist, from geometric designs to composite materials, most face challenges in balancing fabrication complexity with device performance. Here, we present a multilayer template stripping approach for fabricating stretchable conductors. This method combines the precision and scalability of template-based fabrication with the simplicity of transfer printing to create engineered microwire networks. Through systematic investigation of geometric parameters, we establish design rules for optimizing mechanical resilience of microwire arrays. We demonstrate both high-performance designs achieving 100% stretchability and robust architectures tolerant to fabrication variations, while maintaining low electrical resistance. The process is compatible with various metals and enables rapid, large-area fabrication, offering a practical route toward scalable manufacturing of stretchable conductors.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 24","pages":" 14587-14596"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d5nr01652e?page=search","citationCount":"0","resultStr":"{\"title\":\"A multilayer template stripping transfer printing method for engineered stretchable electronics†\",\"authors\":\"Léo Sifringer, Daniel Laguna, Michel Sommer and János Vörös\",\"doi\":\"10.1039/D5NR01652E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stretchable electronics require sophisticated fabrication strategies to achieve both high electrical performance and mechanical compliance. While various approaches exist, from geometric designs to composite materials, most face challenges in balancing fabrication complexity with device performance. Here, we present a multilayer template stripping approach for fabricating stretchable conductors. This method combines the precision and scalability of template-based fabrication with the simplicity of transfer printing to create engineered microwire networks. Through systematic investigation of geometric parameters, we establish design rules for optimizing mechanical resilience of microwire arrays. We demonstrate both high-performance designs achieving 100% stretchability and robust architectures tolerant to fabrication variations, while maintaining low electrical resistance. The process is compatible with various metals and enables rapid, large-area fabrication, offering a practical route toward scalable manufacturing of stretchable conductors.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 24\",\"pages\":\" 14587-14596\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d5nr01652e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01652e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d5nr01652e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可拉伸电子设备需要复杂的制造策略来实现高电气性能和机械合规性。虽然存在各种方法,从几何设计到复合材料,但大多数方法都面临平衡制造复杂性和器件性能的挑战。在这里,我们提出了一种多层模板剥离方法来制造可拉伸导体。这种方法结合了基于模板制造的精度和可扩展性以及转移印刷的简单性来创建工程微线网络。通过对微线阵列几何参数的系统研究,建立了优化微线阵列机械弹性的设计规则。我们展示了高性能设计,实现了100%的拉伸性和坚固的架构,可以容忍制造变化,同时保持低电阻。该工艺与各种金属兼容,能够实现快速、大面积的制造,为可拉伸导体的可扩展制造提供了一条实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A multilayer template stripping transfer printing method for engineered stretchable electronics†

A multilayer template stripping transfer printing method for engineered stretchable electronics†

Stretchable electronics require sophisticated fabrication strategies to achieve both high electrical performance and mechanical compliance. While various approaches exist, from geometric designs to composite materials, most face challenges in balancing fabrication complexity with device performance. Here, we present a multilayer template stripping approach for fabricating stretchable conductors. This method combines the precision and scalability of template-based fabrication with the simplicity of transfer printing to create engineered microwire networks. Through systematic investigation of geometric parameters, we establish design rules for optimizing mechanical resilience of microwire arrays. We demonstrate both high-performance designs achieving 100% stretchability and robust architectures tolerant to fabrication variations, while maintaining low electrical resistance. The process is compatible with various metals and enables rapid, large-area fabrication, offering a practical route toward scalable manufacturing of stretchable conductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信