BiCuSeO-CDs复合材料的多尺度微结构和载流子-声子去耦

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao Yong, Ying Lei, Juan Li, Yu Li, Lin Xu, Fan Ye, Jian Du, Dongsheng Wang, Zhongjuan Hu, Shaowu Zhang
{"title":"BiCuSeO-CDs复合材料的多尺度微结构和载流子-声子去耦","authors":"Chao Yong, Ying Lei, Juan Li, Yu Li, Lin Xu, Fan Ye, Jian Du, Dongsheng Wang, Zhongjuan Hu, Shaowu Zhang","doi":"10.1021/acs.nanolett.5c01160","DOIUrl":null,"url":null,"abstract":"Owing to the carrier–phonon coupling, the majority of thermoelectric materials such as BiCuSeO adopt the strategy of sacrificing carrier mobility and thermal properties to improve the electrical performance so as to enhance the <i>zT</i> value. In response, we innovatively introduce carbon dots (CDs) as a nanophase and efficiently synthesize Bi<sub>0.88</sub>Ca<sub>0.06</sub>Pb<sub>0.06</sub>CuSeO-CDs composites, attenuating the carrier–phonon coupling while realizing the structure optimization on the multiscale. The addition of CDs improves the electrical performance (PF<sub><i>max</i></sub> = 883.99 μW m<sup>–1</sup> K<sup>–2</sup>), and CDs introduce multiscale defects that strongly scatter phonons across multiple frequencies, drastically reducing the lattice thermal conductivity to 0.14 W m<sup>–1</sup> K<sup>–1</sup>. The BCPCSO-0.15 wt % CDs achieve a record <i>zT</i> value of 1.82 at 873 K, representing a 61.97% enhancement of the BCPCSO matrix, with an average <i>zT</i> value reaching 1.11. This research offers an economical, efficient, and scalable approach to improve thermoelectric performance of BiCuSeO, offering a novel pathway for performance optimization of other structurally similar thermoelectric materials.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"82 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Microstructures and Carrier–Phonon Decoupling in BiCuSeO-CDs Composites\",\"authors\":\"Chao Yong, Ying Lei, Juan Li, Yu Li, Lin Xu, Fan Ye, Jian Du, Dongsheng Wang, Zhongjuan Hu, Shaowu Zhang\",\"doi\":\"10.1021/acs.nanolett.5c01160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the carrier–phonon coupling, the majority of thermoelectric materials such as BiCuSeO adopt the strategy of sacrificing carrier mobility and thermal properties to improve the electrical performance so as to enhance the <i>zT</i> value. In response, we innovatively introduce carbon dots (CDs) as a nanophase and efficiently synthesize Bi<sub>0.88</sub>Ca<sub>0.06</sub>Pb<sub>0.06</sub>CuSeO-CDs composites, attenuating the carrier–phonon coupling while realizing the structure optimization on the multiscale. The addition of CDs improves the electrical performance (PF<sub><i>max</i></sub> = 883.99 μW m<sup>–1</sup> K<sup>–2</sup>), and CDs introduce multiscale defects that strongly scatter phonons across multiple frequencies, drastically reducing the lattice thermal conductivity to 0.14 W m<sup>–1</sup> K<sup>–1</sup>. The BCPCSO-0.15 wt % CDs achieve a record <i>zT</i> value of 1.82 at 873 K, representing a 61.97% enhancement of the BCPCSO matrix, with an average <i>zT</i> value reaching 1.11. This research offers an economical, efficient, and scalable approach to improve thermoelectric performance of BiCuSeO, offering a novel pathway for performance optimization of other structurally similar thermoelectric materials.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01160\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01160","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于载流子-声子耦合,BiCuSeO等大多数热电材料采用牺牲载流子迁移率和热性能的策略来提高电学性能,从而提高zT值。为此,我们创新性地引入碳点(cd)作为纳米相,高效地合成了Bi0.88Ca0.06Pb0.06CuSeO-CDs复合材料,在降低载流子-声子耦合的同时实现了多尺度结构优化。cd的加入提高了电性能(PFmax = 883.99 μW m-1 K-2),并且cd引入了多尺度缺陷,使声子在多个频率上强烈散射,大大降低了晶格热导率至0.14 W m-1 K-1。BCPCSO-0.15 wt % CDs在873 K时达到创纪录的1.82 zT值,比BCPCSO矩阵提高了61.97%,平均zT值达到1.11。本研究为提高BiCuSeO的热电性能提供了一种经济、高效、可扩展的方法,为其他结构相似的热电材料的性能优化提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiscale Microstructures and Carrier–Phonon Decoupling in BiCuSeO-CDs Composites

Multiscale Microstructures and Carrier–Phonon Decoupling in BiCuSeO-CDs Composites
Owing to the carrier–phonon coupling, the majority of thermoelectric materials such as BiCuSeO adopt the strategy of sacrificing carrier mobility and thermal properties to improve the electrical performance so as to enhance the zT value. In response, we innovatively introduce carbon dots (CDs) as a nanophase and efficiently synthesize Bi0.88Ca0.06Pb0.06CuSeO-CDs composites, attenuating the carrier–phonon coupling while realizing the structure optimization on the multiscale. The addition of CDs improves the electrical performance (PFmax = 883.99 μW m–1 K–2), and CDs introduce multiscale defects that strongly scatter phonons across multiple frequencies, drastically reducing the lattice thermal conductivity to 0.14 W m–1 K–1. The BCPCSO-0.15 wt % CDs achieve a record zT value of 1.82 at 873 K, representing a 61.97% enhancement of the BCPCSO matrix, with an average zT value reaching 1.11. This research offers an economical, efficient, and scalable approach to improve thermoelectric performance of BiCuSeO, offering a novel pathway for performance optimization of other structurally similar thermoelectric materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信