{"title":"一种用于声动力治疗耐药细菌的易配位聚合物纳米颗粒","authors":"Xianhui Song, Jie Li, Siyuan Huang, Yufei Zhang, Shihao Hong, Xinge Zhang","doi":"10.1002/smll.202501131","DOIUrl":null,"url":null,"abstract":"<p>The emergence of drug resistance in bacteria, along with the protective nature and intricate environment of biofilms, impedes the effective treatment of severe bacterial infections, posing significant health risks. Herein, a coordination polymer nanoparticle (LZC) is fabricated via a facile in situ strategy for sonodynamic therapy (SDT) combating drug-resistant bacteria-induced infections. By conjugating the Food and Drug Administration (FDA)-approved safe sonosensitizer porphyrin chlorin e6 (Ce6) with a positively charged antimicrobial peptide LL37 through coordination interaction, the resultant LZC exhibits uniform size and a positively charged surface, which is beneficial for the efficient capture of bacteria and improved nanoparticle penetration into biofilms. Under ultrasound (US) stimuli, the nanoparticle generates a higher reactive oxygen species (ROS) compared with the free sonosensitizers, as well as the production of heat, leading to bacterial cell death and biofilm disruption. In vitro evaluations reveal the robust antibacterial activity of LZC, achieving up to 99% eradication of multi-drug resistant <i>Pseudomonas aeruginosa</i> (MDRPA) and significant biofilm eradication under deep-penetrating US irradiation. Moreover, the establishment of coordination polymer nanoparticles represents an innovative strategy to enhance SDT in an MDRPA-induced-pneumonia mice model and provides a great promise for advancing therapeutic interventions in deep tissue bacterial infections.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 29","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Facile Coordination Polymer Nanoparticle for Sonodynamic Therapy Combating Drug-Resistant Bacteria\",\"authors\":\"Xianhui Song, Jie Li, Siyuan Huang, Yufei Zhang, Shihao Hong, Xinge Zhang\",\"doi\":\"10.1002/smll.202501131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emergence of drug resistance in bacteria, along with the protective nature and intricate environment of biofilms, impedes the effective treatment of severe bacterial infections, posing significant health risks. Herein, a coordination polymer nanoparticle (LZC) is fabricated via a facile in situ strategy for sonodynamic therapy (SDT) combating drug-resistant bacteria-induced infections. By conjugating the Food and Drug Administration (FDA)-approved safe sonosensitizer porphyrin chlorin e6 (Ce6) with a positively charged antimicrobial peptide LL37 through coordination interaction, the resultant LZC exhibits uniform size and a positively charged surface, which is beneficial for the efficient capture of bacteria and improved nanoparticle penetration into biofilms. Under ultrasound (US) stimuli, the nanoparticle generates a higher reactive oxygen species (ROS) compared with the free sonosensitizers, as well as the production of heat, leading to bacterial cell death and biofilm disruption. In vitro evaluations reveal the robust antibacterial activity of LZC, achieving up to 99% eradication of multi-drug resistant <i>Pseudomonas aeruginosa</i> (MDRPA) and significant biofilm eradication under deep-penetrating US irradiation. Moreover, the establishment of coordination polymer nanoparticles represents an innovative strategy to enhance SDT in an MDRPA-induced-pneumonia mice model and provides a great promise for advancing therapeutic interventions in deep tissue bacterial infections.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 29\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501131\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501131","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Facile Coordination Polymer Nanoparticle for Sonodynamic Therapy Combating Drug-Resistant Bacteria
The emergence of drug resistance in bacteria, along with the protective nature and intricate environment of biofilms, impedes the effective treatment of severe bacterial infections, posing significant health risks. Herein, a coordination polymer nanoparticle (LZC) is fabricated via a facile in situ strategy for sonodynamic therapy (SDT) combating drug-resistant bacteria-induced infections. By conjugating the Food and Drug Administration (FDA)-approved safe sonosensitizer porphyrin chlorin e6 (Ce6) with a positively charged antimicrobial peptide LL37 through coordination interaction, the resultant LZC exhibits uniform size and a positively charged surface, which is beneficial for the efficient capture of bacteria and improved nanoparticle penetration into biofilms. Under ultrasound (US) stimuli, the nanoparticle generates a higher reactive oxygen species (ROS) compared with the free sonosensitizers, as well as the production of heat, leading to bacterial cell death and biofilm disruption. In vitro evaluations reveal the robust antibacterial activity of LZC, achieving up to 99% eradication of multi-drug resistant Pseudomonas aeruginosa (MDRPA) and significant biofilm eradication under deep-penetrating US irradiation. Moreover, the establishment of coordination polymer nanoparticles represents an innovative strategy to enhance SDT in an MDRPA-induced-pneumonia mice model and provides a great promise for advancing therapeutic interventions in deep tissue bacterial infections.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.