{"title":"有效自旋参数的解析联合先验和双黑洞自旋分布的推断","authors":"Masaki Iwaya, Kazuya Kobayashi, Soichiro Morisaki, Kenta Hotokezaka, Tomoya Kinugawa","doi":"10.1103/physrevd.111.103046","DOIUrl":null,"url":null,"abstract":"We derive an analytic form of the joint prior of effective spin parameters, χ</a:mi></a:mrow>eff</a:mi></a:mrow></a:msub></a:mrow></a:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>χ</c:mi><c:mi mathvariant=\"normal\">p</c:mi></c:msub></c:math>, assuming an isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical Bayesian inference for studying the population properties of merging compact binaries observed with gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation (KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where both <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mo stretchy=\"false\">|</f:mo><f:msub><f:mi>χ</f:mi><f:mi>eff</f:mi></f:msub><f:mo stretchy=\"false\">|</f:mo></f:math> and <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msub><j:mi>χ</j:mi><j:mi mathvariant=\"normal\">p</j:mi></j:msub></j:math> are small. Our analytic approach provides accurate computations of the joint prior across the entire parameter space and enables more reliable population inference. Employing our analytic prior, we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due to the use of the inaccurate prior evaluations are <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi mathvariant=\"script\">O</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mn>1</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math>, implying the bias is already at the concerning level if one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates with the increasing number of events, our analytic prior will be more crucial in future analyses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"41 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic joint priors of effective spin parameters and inference of the spin distribution of binary black holes\",\"authors\":\"Masaki Iwaya, Kazuya Kobayashi, Soichiro Morisaki, Kenta Hotokezaka, Tomoya Kinugawa\",\"doi\":\"10.1103/physrevd.111.103046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an analytic form of the joint prior of effective spin parameters, χ</a:mi></a:mrow>eff</a:mi></a:mrow></a:msub></a:mrow></a:math> and <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>χ</c:mi><c:mi mathvariant=\\\"normal\\\">p</c:mi></c:msub></c:math>, assuming an isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical Bayesian inference for studying the population properties of merging compact binaries observed with gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation (KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where both <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mo stretchy=\\\"false\\\">|</f:mo><f:msub><f:mi>χ</f:mi><f:mi>eff</f:mi></f:msub><f:mo stretchy=\\\"false\\\">|</f:mo></f:math> and <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:msub><j:mi>χ</j:mi><j:mi mathvariant=\\\"normal\\\">p</j:mi></j:msub></j:math> are small. Our analytic approach provides accurate computations of the joint prior across the entire parameter space and enables more reliable population inference. Employing our analytic prior, we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due to the use of the inaccurate prior evaluations are <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi mathvariant=\\\"script\\\">O</m:mi><m:mo stretchy=\\\"false\\\">(</m:mo><m:mn>1</m:mn><m:mo stretchy=\\\"false\\\">)</m:mo></m:math>, implying the bias is already at the concerning level if one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates with the increasing number of events, our analytic prior will be more crucial in future analyses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.103046\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.103046","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Analytic joint priors of effective spin parameters and inference of the spin distribution of binary black holes
We derive an analytic form of the joint prior of effective spin parameters, χeff and χp, assuming an isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical Bayesian inference for studying the population properties of merging compact binaries observed with gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation (KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where both |χeff| and χp are small. Our analytic approach provides accurate computations of the joint prior across the entire parameter space and enables more reliable population inference. Employing our analytic prior, we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due to the use of the inaccurate prior evaluations are O(1), implying the bias is already at the concerning level if one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates with the increasing number of events, our analytic prior will be more crucial in future analyses. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.