有效自旋参数的解析联合先验和双黑洞自旋分布的推断

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Masaki Iwaya, Kazuya Kobayashi, Soichiro Morisaki, Kenta Hotokezaka, Tomoya Kinugawa
{"title":"有效自旋参数的解析联合先验和双黑洞自旋分布的推断","authors":"Masaki Iwaya, Kazuya Kobayashi, Soichiro Morisaki, Kenta Hotokezaka, Tomoya Kinugawa","doi":"10.1103/physrevd.111.103046","DOIUrl":null,"url":null,"abstract":"We derive an analytic form of the joint prior of effective spin parameters, χ</a:mi></a:mrow>eff</a:mi></a:mrow></a:msub></a:mrow></a:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>χ</c:mi><c:mi mathvariant=\"normal\">p</c:mi></c:msub></c:math>, assuming an isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical Bayesian inference for studying the population properties of merging compact binaries observed with gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation (KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where both <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mo stretchy=\"false\">|</f:mo><f:msub><f:mi>χ</f:mi><f:mi>eff</f:mi></f:msub><f:mo stretchy=\"false\">|</f:mo></f:math> and <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msub><j:mi>χ</j:mi><j:mi mathvariant=\"normal\">p</j:mi></j:msub></j:math> are small. Our analytic approach provides accurate computations of the joint prior across the entire parameter space and enables more reliable population inference. Employing our analytic prior, we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due to the use of the inaccurate prior evaluations are <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi mathvariant=\"script\">O</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mn>1</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math>, implying the bias is already at the concerning level if one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates with the increasing number of events, our analytic prior will be more crucial in future analyses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"41 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic joint priors of effective spin parameters and inference of the spin distribution of binary black holes\",\"authors\":\"Masaki Iwaya, Kazuya Kobayashi, Soichiro Morisaki, Kenta Hotokezaka, Tomoya Kinugawa\",\"doi\":\"10.1103/physrevd.111.103046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an analytic form of the joint prior of effective spin parameters, χ</a:mi></a:mrow>eff</a:mi></a:mrow></a:msub></a:mrow></a:math> and <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:msub><c:mi>χ</c:mi><c:mi mathvariant=\\\"normal\\\">p</c:mi></c:msub></c:math>, assuming an isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical Bayesian inference for studying the population properties of merging compact binaries observed with gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation (KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where both <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mo stretchy=\\\"false\\\">|</f:mo><f:msub><f:mi>χ</f:mi><f:mi>eff</f:mi></f:msub><f:mo stretchy=\\\"false\\\">|</f:mo></f:math> and <j:math xmlns:j=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><j:msub><j:mi>χ</j:mi><j:mi mathvariant=\\\"normal\\\">p</j:mi></j:msub></j:math> are small. Our analytic approach provides accurate computations of the joint prior across the entire parameter space and enables more reliable population inference. Employing our analytic prior, we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due to the use of the inaccurate prior evaluations are <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi mathvariant=\\\"script\\\">O</m:mi><m:mo stretchy=\\\"false\\\">(</m:mo><m:mn>1</m:mn><m:mo stretchy=\\\"false\\\">)</m:mo></m:math>, implying the bias is already at the concerning level if one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates with the increasing number of events, our analytic prior will be more crucial in future analyses. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.103046\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.103046","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了有效自旋参数χeff和χp联合先验的解析形式,假设自旋分布各向同性且大小均匀。这对于研究引力波观测到的并合紧双星的居群特性进行层次贝叶斯推理是至关重要的因素。在前面的分析中,这是使用核密度估计(KDE)进行数值计算的。然而,我们发现这种数值方法在某些参数区域是不准确的,其中|χeff|和χp都很小。我们的分析方法提供了跨整个参数空间的联合先验的精确计算,并使更可靠的总体推断。利用我们的分析先验,我们重新分析了LIGO-Virgo-KAGRA合作项目引力波瞬变目录3 (GWTC-3)中的双黑洞。虽然结果基本不变,但由于使用不准确的先前评估而导致的对数似然误差为0(1),这意味着如果采用对数似然方差切割,则偏差已经处于相关水平。由于数值方法的系统偏差随着事件数量的增加而积累,我们的分析先验在未来的分析中将更加重要。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic joint priors of effective spin parameters and inference of the spin distribution of binary black holes
We derive an analytic form of the joint prior of effective spin parameters, χeff and χp, assuming an isotropic and uniform-in-magnitude spin distribution. This is a vital factor in performing hierarchical Bayesian inference for studying the population properties of merging compact binaries observed with gravitational waves. In previous analyses, this was evaluated numerically using kernel density estimation (KDE). However, we find that this numerical approach is inaccurate in certain parameter regions, where both |χeff| and χp are small. Our analytic approach provides accurate computations of the joint prior across the entire parameter space and enables more reliable population inference. Employing our analytic prior, we reanalyze binary black holes in the gravitational-wave transient catalog 3 (GWTC-3) by the LIGO-Virgo-KAGRA collaboration. While the results are largely unchanged, log-likelihood errors due to the use of the inaccurate prior evaluations are O(1), implying the bias is already at the concerning level if one adopts a log-likelihood variance cut. Since the systematic bias from the numerical method accumulates with the increasing number of events, our analytic prior will be more crucial in future analyses. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信