Lars Fischer, Bianca Giaccone, Ivan Gonin, Anna Grassellino, Wolfgang Hillert, Timergali Khabiboulline, Tom Krokotsch, Gudrid Moortgat-Pick, Andrea Muhs, Yuriy Orlov, Michel Paulsen, Krisztian Peters, Sam Posen, Oleg Pronitchev and Marc Wenskat
{"title":"第一个表征MAGO腔,一个超导射频探测器用于kHz-MHz引力波","authors":"Lars Fischer, Bianca Giaccone, Ivan Gonin, Anna Grassellino, Wolfgang Hillert, Timergali Khabiboulline, Tom Krokotsch, Gudrid Moortgat-Pick, Andrea Muhs, Yuriy Orlov, Michel Paulsen, Krisztian Peters, Sam Posen, Oleg Pronitchev and Marc Wenskat","doi":"10.1088/1361-6382/add8da","DOIUrl":null,"url":null,"abstract":"Heterodyne detection using microwave cavities is a promising method for detecting high-frequency gravitational waves (GWs) or ultralight axion dark matter. In this work, we report on studies conducted on a spherical 2-cell cavity developed by the MAGO collaboration for high-frequency GWs detection. Although fabricated around 20 years ago, the cavity had not been used since. Due to deviations from the nominal geometry, we conducted a mechanical survey and performed room-temperature plastic tuning. Measurements and simulations of the mechanical resonances and electromagnetic properties were carried out, as these are critical for estimating the cavity’s GW coupling potential. Based on these results, we plan further studies in a cryogenic environment. The cavity characterisation does not only provide valuable experience for a planned physics run but also informs the future development of improved cavity designs.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"146 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First characterisation of the MAGO cavity, a superconducting RF detector for kHz–MHz gravitational waves\",\"authors\":\"Lars Fischer, Bianca Giaccone, Ivan Gonin, Anna Grassellino, Wolfgang Hillert, Timergali Khabiboulline, Tom Krokotsch, Gudrid Moortgat-Pick, Andrea Muhs, Yuriy Orlov, Michel Paulsen, Krisztian Peters, Sam Posen, Oleg Pronitchev and Marc Wenskat\",\"doi\":\"10.1088/1361-6382/add8da\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterodyne detection using microwave cavities is a promising method for detecting high-frequency gravitational waves (GWs) or ultralight axion dark matter. In this work, we report on studies conducted on a spherical 2-cell cavity developed by the MAGO collaboration for high-frequency GWs detection. Although fabricated around 20 years ago, the cavity had not been used since. Due to deviations from the nominal geometry, we conducted a mechanical survey and performed room-temperature plastic tuning. Measurements and simulations of the mechanical resonances and electromagnetic properties were carried out, as these are critical for estimating the cavity’s GW coupling potential. Based on these results, we plan further studies in a cryogenic environment. The cavity characterisation does not only provide valuable experience for a planned physics run but also informs the future development of improved cavity designs.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"146 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/add8da\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/add8da","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
First characterisation of the MAGO cavity, a superconducting RF detector for kHz–MHz gravitational waves
Heterodyne detection using microwave cavities is a promising method for detecting high-frequency gravitational waves (GWs) or ultralight axion dark matter. In this work, we report on studies conducted on a spherical 2-cell cavity developed by the MAGO collaboration for high-frequency GWs detection. Although fabricated around 20 years ago, the cavity had not been used since. Due to deviations from the nominal geometry, we conducted a mechanical survey and performed room-temperature plastic tuning. Measurements and simulations of the mechanical resonances and electromagnetic properties were carried out, as these are critical for estimating the cavity’s GW coupling potential. Based on these results, we plan further studies in a cryogenic environment. The cavity characterisation does not only provide valuable experience for a planned physics run but also informs the future development of improved cavity designs.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.