{"title":"超分子聚合物系统中微观动态复杂性中出现的非平凡刺激响应集体行为","authors":"Martina Crippa, Claudio Perego, Giovanni M. Pavan","doi":"10.1038/s41467-025-60150-4","DOIUrl":null,"url":null,"abstract":"<p>Supramolecular polymers are composed of monomers that self-assemble non-covalently generating distributions of fibres in continuous exchange-and-communication with each other and the surroundings. Intriguing collective properties may emerge in such molecular-scale complex systems, following mechanisms often difficult to ascertain. Here we show how non-trivial collective behaviours may emerge in dynamical supramolecular polymer systems already at low-complexity levels. We combine minimalistic models, simulations, and advanced statistical analyses investigating how cooperative and non-cooperative supramolecular polymer systems respond to a specific stimulus: i.e., the addition of molecular sequestrators perturbing their equilibrium. Our data show how, while in a non-cooperative system all assemblies populating the system suffer uniformly the perturbation, in a cooperative system the larger/stronger assemblies survive at the expense of the smaller/weaker entities. Collective behaviours typical of larger-scale and more complex (social, economic, etc.) systems may thus emerge even in relatively simple self-assembling systems from the internal (microscopic) dynamic heterogeneity of their ensembles.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"60 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-trivial stimuli-responsive collective behaviours emerging from microscopic dynamic complexity in supramolecular polymer systems\",\"authors\":\"Martina Crippa, Claudio Perego, Giovanni M. Pavan\",\"doi\":\"10.1038/s41467-025-60150-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supramolecular polymers are composed of monomers that self-assemble non-covalently generating distributions of fibres in continuous exchange-and-communication with each other and the surroundings. Intriguing collective properties may emerge in such molecular-scale complex systems, following mechanisms often difficult to ascertain. Here we show how non-trivial collective behaviours may emerge in dynamical supramolecular polymer systems already at low-complexity levels. We combine minimalistic models, simulations, and advanced statistical analyses investigating how cooperative and non-cooperative supramolecular polymer systems respond to a specific stimulus: i.e., the addition of molecular sequestrators perturbing their equilibrium. Our data show how, while in a non-cooperative system all assemblies populating the system suffer uniformly the perturbation, in a cooperative system the larger/stronger assemblies survive at the expense of the smaller/weaker entities. Collective behaviours typical of larger-scale and more complex (social, economic, etc.) systems may thus emerge even in relatively simple self-assembling systems from the internal (microscopic) dynamic heterogeneity of their ensembles.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60150-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60150-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Non-trivial stimuli-responsive collective behaviours emerging from microscopic dynamic complexity in supramolecular polymer systems
Supramolecular polymers are composed of monomers that self-assemble non-covalently generating distributions of fibres in continuous exchange-and-communication with each other and the surroundings. Intriguing collective properties may emerge in such molecular-scale complex systems, following mechanisms often difficult to ascertain. Here we show how non-trivial collective behaviours may emerge in dynamical supramolecular polymer systems already at low-complexity levels. We combine minimalistic models, simulations, and advanced statistical analyses investigating how cooperative and non-cooperative supramolecular polymer systems respond to a specific stimulus: i.e., the addition of molecular sequestrators perturbing their equilibrium. Our data show how, while in a non-cooperative system all assemblies populating the system suffer uniformly the perturbation, in a cooperative system the larger/stronger assemblies survive at the expense of the smaller/weaker entities. Collective behaviours typical of larger-scale and more complex (social, economic, etc.) systems may thus emerge even in relatively simple self-assembling systems from the internal (microscopic) dynamic heterogeneity of their ensembles.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.