{"title":"脆弱但不平等:高山湖泊浮游植物对气候变化的响应表现出异质模式","authors":"Flavia Dory, Florent Arthaud, Vincent Augé, Sonia Baillot, Céline Bertrand, Carole Birck, Rosalie Bruel, Laurent Cavalli, Evelyne Franquet, Frédérick Jacob, Clotilde Sagot, Marine Souchier, Raphaelle Napoleoni, Marie-Elodie Perga","doi":"10.1002/lol2.70034","DOIUrl":null,"url":null,"abstract":"<p>While climate change affects the phytoplankton biodiversity at both local and global scales, predicting phytoplankton community responses to warming is impaired by their polyphyletic complexity. High mountain lakes are highly vulnerable systems, partly due to their limited biodiversity, and forecasting their ecological trajectories is a key challenge for scientists and conservation managers. We evaluated the phytoplankton's sensitivity to temperature in 24 high-altitude lakes over a multi-year (average 7-year) study. We detected assemblage-specific responses to warming, with different trends in biovolume and diversity observed among the diatom-dominant, mixed-mixotrophs dominant, and colonial-green dominant assemblages. The environmental settings partly governed assemblage responses, highlighting the role of the landscape filters in determining the response to warming. The biological stability of lakes, that is, their ability to resist shifts in their phytoplankton assemblage, is therefore determined both by the lake characteristics and warming intensity.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"10 5","pages":"712-723"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.70034","citationCount":"0","resultStr":"{\"title\":\"Vulnerable but not equal: Mountain lakes exhibit heterogeneous patterns of phytoplankton responses to climate change\",\"authors\":\"Flavia Dory, Florent Arthaud, Vincent Augé, Sonia Baillot, Céline Bertrand, Carole Birck, Rosalie Bruel, Laurent Cavalli, Evelyne Franquet, Frédérick Jacob, Clotilde Sagot, Marine Souchier, Raphaelle Napoleoni, Marie-Elodie Perga\",\"doi\":\"10.1002/lol2.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While climate change affects the phytoplankton biodiversity at both local and global scales, predicting phytoplankton community responses to warming is impaired by their polyphyletic complexity. High mountain lakes are highly vulnerable systems, partly due to their limited biodiversity, and forecasting their ecological trajectories is a key challenge for scientists and conservation managers. We evaluated the phytoplankton's sensitivity to temperature in 24 high-altitude lakes over a multi-year (average 7-year) study. We detected assemblage-specific responses to warming, with different trends in biovolume and diversity observed among the diatom-dominant, mixed-mixotrophs dominant, and colonial-green dominant assemblages. The environmental settings partly governed assemblage responses, highlighting the role of the landscape filters in determining the response to warming. The biological stability of lakes, that is, their ability to resist shifts in their phytoplankton assemblage, is therefore determined both by the lake characteristics and warming intensity.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"10 5\",\"pages\":\"712-723\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.70034\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lol2.70034\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lol2.70034","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Vulnerable but not equal: Mountain lakes exhibit heterogeneous patterns of phytoplankton responses to climate change
While climate change affects the phytoplankton biodiversity at both local and global scales, predicting phytoplankton community responses to warming is impaired by their polyphyletic complexity. High mountain lakes are highly vulnerable systems, partly due to their limited biodiversity, and forecasting their ecological trajectories is a key challenge for scientists and conservation managers. We evaluated the phytoplankton's sensitivity to temperature in 24 high-altitude lakes over a multi-year (average 7-year) study. We detected assemblage-specific responses to warming, with different trends in biovolume and diversity observed among the diatom-dominant, mixed-mixotrophs dominant, and colonial-green dominant assemblages. The environmental settings partly governed assemblage responses, highlighting the role of the landscape filters in determining the response to warming. The biological stability of lakes, that is, their ability to resist shifts in their phytoplankton assemblage, is therefore determined both by the lake characteristics and warming intensity.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.