优化基因编辑的同源修复:单链DNA供体的潜力。

IF 16.3 2区 生物学 Q1 GENETICS & HEREDITY
Ying-Ying Jin, Peng Zhang, De-Pei Liu
{"title":"优化基因编辑的同源修复:单链DNA供体的潜力。","authors":"Ying-Ying Jin, Peng Zhang, De-Pei Liu","doi":"10.1016/j.tig.2025.04.014","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR (clustered regularly interspaced short palindromic repeat) system-based precise genome editing remarkably impacts both scientific investigation and therapeutic practices. Among various techniques, DNA donor-mediated homology-directed repair (HDR) represents a promising method for precise gene editing. Although efficiency constraints have previously limited HDR, recent advancements have significantly enhanced its effectiveness. Therefore, it is essential to highlight the progress made in this field and to reassess the potential of the HDR approach. In this review, we explore the fundamental principles of HDR-dependent gene editing and evaluate current strategies to enhance HDR efficiency, with particular emphasis on single-stranded DNA (ssDNA) donor-mediated HDR. Finally, we discuss the prospects of high-efficiency ssDNA donor-mediated precise gene editing in laboratory research and clinical therapies.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing homology-directed repair for gene editing: the potential of single-stranded DNA donors.\",\"authors\":\"Ying-Ying Jin, Peng Zhang, De-Pei Liu\",\"doi\":\"10.1016/j.tig.2025.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR (clustered regularly interspaced short palindromic repeat) system-based precise genome editing remarkably impacts both scientific investigation and therapeutic practices. Among various techniques, DNA donor-mediated homology-directed repair (HDR) represents a promising method for precise gene editing. Although efficiency constraints have previously limited HDR, recent advancements have significantly enhanced its effectiveness. Therefore, it is essential to highlight the progress made in this field and to reassess the potential of the HDR approach. In this review, we explore the fundamental principles of HDR-dependent gene editing and evaluate current strategies to enhance HDR efficiency, with particular emphasis on single-stranded DNA (ssDNA) donor-mediated HDR. Finally, we discuss the prospects of high-efficiency ssDNA donor-mediated precise gene editing in laboratory research and clinical therapies.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.04.014\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.04.014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

CRISPR(聚类规则间隔短回文重复)系统为基础的精确基因组编辑显著影响科学研究和治疗实践。在各种技术中,DNA供体介导的同源定向修复(HDR)是一种很有前途的精确基因编辑方法。虽然以前效率限制限制了HDR,但最近的进展大大提高了其有效性。因此,必须强调在这一领域取得的进展,并重新评估HDR方法的潜力。在这篇综述中,我们探讨了HDR依赖基因编辑的基本原理,并评估了目前提高HDR效率的策略,特别强调了单链DNA (ssDNA)供体介导的HDR。最后,我们讨论了高效ssDNA供体介导的精确基因编辑在实验室研究和临床治疗中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing homology-directed repair for gene editing: the potential of single-stranded DNA donors.

CRISPR (clustered regularly interspaced short palindromic repeat) system-based precise genome editing remarkably impacts both scientific investigation and therapeutic practices. Among various techniques, DNA donor-mediated homology-directed repair (HDR) represents a promising method for precise gene editing. Although efficiency constraints have previously limited HDR, recent advancements have significantly enhanced its effectiveness. Therefore, it is essential to highlight the progress made in this field and to reassess the potential of the HDR approach. In this review, we explore the fundamental principles of HDR-dependent gene editing and evaluate current strategies to enhance HDR efficiency, with particular emphasis on single-stranded DNA (ssDNA) donor-mediated HDR. Finally, we discuss the prospects of high-efficiency ssDNA donor-mediated precise gene editing in laboratory research and clinical therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Genetics
Trends in Genetics 生物-遗传学
CiteScore
20.90
自引率
0.90%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology. Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信