{"title":"恶臭假单胞菌KT2440 Omega转氨酶促进(R)-PAC向(1R, 2S)-去甲麻黄碱生物转化的结构见解和合理设计","authors":"Parijat Das, Santosh Noronha, Prasenjit Bhaumik","doi":"10.1016/j.jbc.2025.110289","DOIUrl":null,"url":null,"abstract":"<p><p>Omega transaminases (ω-TAs) can mediate the chiral amination of several unnatural substrates without the requirement of an α-COOH group and are highly relevant in the production of several pharmaceutical intermediates of commercial interest. Development of better variants of ω-TAs is hence essential for the biotransformation of unnatural substrates. We studied the active site architecture of the wild-type ω-TAs, to engineer enzymes that enhance the biotransformation of (R)-phenylacetylcarbinol to (1R, 2S)-norephedrine. Two such ω-TAs (TA_5182 and TA_2799) from P. putida KT2440 strain were overexpressed and purified as recombinant proteins. Crystal structures of TA_5182 were solved in two conformations, revealing significant movements of two highly flexible loops in these different states. The TA_2799 structure was determined as a complex with the cofactor pyridoxal 5'-phosphate (PLP) covalently bound to the catalytic K286 as an internal aldimine. Enzyme assays indicated that TA_2799 required a four-fold higher cofactor concentration than TA_5182 to achieve satisfactory biotransformation of (R)-PAC. A key mutation of L322F in TA_2799 drastically reduced (∼8-fold) the cofactor dependency of the TA_2799_L322F mutant enzyme, and the mutant remained active for 96 h at 30 °C. The crystal structure of the mutant enzyme revealed a key asparagine residue that mediates a hydrogen bonding network at the dimeric interface of the enzyme and is absent in TA_5182. The TA_5182_G119N mutant also showed enhanced cofactor affinity. The results of our studies will help generate Pseudomonad ω-TAs and ω-TAs from other organisms with high efficiency for asymmetric synthesis, for further applications in large-scale biotransformation processes.</p>","PeriodicalId":51075,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110289"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226076/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural insights and rational design of Pseudomonasputida KT2440 omega transaminases for enhanced biotransformation of (R)-PAC to (1R, 2S)-Norephedrine.\",\"authors\":\"Parijat Das, Santosh Noronha, Prasenjit Bhaumik\",\"doi\":\"10.1016/j.jbc.2025.110289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Omega transaminases (ω-TAs) can mediate the chiral amination of several unnatural substrates without the requirement of an α-COOH group and are highly relevant in the production of several pharmaceutical intermediates of commercial interest. Development of better variants of ω-TAs is hence essential for the biotransformation of unnatural substrates. We studied the active site architecture of the wild-type ω-TAs, to engineer enzymes that enhance the biotransformation of (R)-phenylacetylcarbinol to (1R, 2S)-norephedrine. Two such ω-TAs (TA_5182 and TA_2799) from P. putida KT2440 strain were overexpressed and purified as recombinant proteins. Crystal structures of TA_5182 were solved in two conformations, revealing significant movements of two highly flexible loops in these different states. The TA_2799 structure was determined as a complex with the cofactor pyridoxal 5'-phosphate (PLP) covalently bound to the catalytic K286 as an internal aldimine. Enzyme assays indicated that TA_2799 required a four-fold higher cofactor concentration than TA_5182 to achieve satisfactory biotransformation of (R)-PAC. A key mutation of L322F in TA_2799 drastically reduced (∼8-fold) the cofactor dependency of the TA_2799_L322F mutant enzyme, and the mutant remained active for 96 h at 30 °C. The crystal structure of the mutant enzyme revealed a key asparagine residue that mediates a hydrogen bonding network at the dimeric interface of the enzyme and is absent in TA_5182. The TA_5182_G119N mutant also showed enhanced cofactor affinity. The results of our studies will help generate Pseudomonad ω-TAs and ω-TAs from other organisms with high efficiency for asymmetric synthesis, for further applications in large-scale biotransformation processes.</p>\",\"PeriodicalId\":51075,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"110289\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226076/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.110289\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110289","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Structural insights and rational design of Pseudomonasputida KT2440 omega transaminases for enhanced biotransformation of (R)-PAC to (1R, 2S)-Norephedrine.
Omega transaminases (ω-TAs) can mediate the chiral amination of several unnatural substrates without the requirement of an α-COOH group and are highly relevant in the production of several pharmaceutical intermediates of commercial interest. Development of better variants of ω-TAs is hence essential for the biotransformation of unnatural substrates. We studied the active site architecture of the wild-type ω-TAs, to engineer enzymes that enhance the biotransformation of (R)-phenylacetylcarbinol to (1R, 2S)-norephedrine. Two such ω-TAs (TA_5182 and TA_2799) from P. putida KT2440 strain were overexpressed and purified as recombinant proteins. Crystal structures of TA_5182 were solved in two conformations, revealing significant movements of two highly flexible loops in these different states. The TA_2799 structure was determined as a complex with the cofactor pyridoxal 5'-phosphate (PLP) covalently bound to the catalytic K286 as an internal aldimine. Enzyme assays indicated that TA_2799 required a four-fold higher cofactor concentration than TA_5182 to achieve satisfactory biotransformation of (R)-PAC. A key mutation of L322F in TA_2799 drastically reduced (∼8-fold) the cofactor dependency of the TA_2799_L322F mutant enzyme, and the mutant remained active for 96 h at 30 °C. The crystal structure of the mutant enzyme revealed a key asparagine residue that mediates a hydrogen bonding network at the dimeric interface of the enzyme and is absent in TA_5182. The TA_5182_G119N mutant also showed enhanced cofactor affinity. The results of our studies will help generate Pseudomonad ω-TAs and ω-TAs from other organisms with high efficiency for asymmetric synthesis, for further applications in large-scale biotransformation processes.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.