{"title":"基于辅助椭圆算子的线性参数抛物型偏微分方程结构可辨识性。","authors":"Yurij Salmaniw, Alexander P Browning","doi":"10.1007/s00285-025-02225-w","DOIUrl":null,"url":null,"abstract":"<p><p>Parameter identifiability is often requisite to the effective application of mathematical models in the interpretation of biological data, however theory applicable to the study of partial differential equations remains limited. We present a new approach to structural identifiability analysis of fully observed parabolic equations that are linear in their parameters. Our approach frames identifiability as an existence and uniqueness problem in a closely related elliptic equation and draws, for homogeneous equations, on the well-known Fredholm alternative to establish unconditional identifiability, and cases where specific choices of initial and boundary conditions lead to non-identifiability. While in some sense pathological, we demonstrate that this loss of structural identifiability has ramifications for practical identifiability; important particularly for spatial problems, where the initial condition is often limited by experimental constraints. For cases with nonlinear reaction terms, uniqueness of solutions to the auxiliary elliptic equation corresponds to identifiability, often leading to unconditional global identifiability under mild assumptions. We present analysis for a suite of simple scalar models with various boundary conditions that include linear (exponential) and nonlinear (logistic) source terms, and a special case of a two-species cell motility model. We conclude by discussing how this new perspective enables well-developed analysis tools to advance the developing theory underlying structural identifiability of partial differential equations.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 1","pages":"4"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural identifiability of linear-in-parameter parabolic PDEs through auxiliary elliptic operators.\",\"authors\":\"Yurij Salmaniw, Alexander P Browning\",\"doi\":\"10.1007/s00285-025-02225-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parameter identifiability is often requisite to the effective application of mathematical models in the interpretation of biological data, however theory applicable to the study of partial differential equations remains limited. We present a new approach to structural identifiability analysis of fully observed parabolic equations that are linear in their parameters. Our approach frames identifiability as an existence and uniqueness problem in a closely related elliptic equation and draws, for homogeneous equations, on the well-known Fredholm alternative to establish unconditional identifiability, and cases where specific choices of initial and boundary conditions lead to non-identifiability. While in some sense pathological, we demonstrate that this loss of structural identifiability has ramifications for practical identifiability; important particularly for spatial problems, where the initial condition is often limited by experimental constraints. For cases with nonlinear reaction terms, uniqueness of solutions to the auxiliary elliptic equation corresponds to identifiability, often leading to unconditional global identifiability under mild assumptions. We present analysis for a suite of simple scalar models with various boundary conditions that include linear (exponential) and nonlinear (logistic) source terms, and a special case of a two-species cell motility model. We conclude by discussing how this new perspective enables well-developed analysis tools to advance the developing theory underlying structural identifiability of partial differential equations.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"91 1\",\"pages\":\"4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02225-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02225-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Structural identifiability of linear-in-parameter parabolic PDEs through auxiliary elliptic operators.
Parameter identifiability is often requisite to the effective application of mathematical models in the interpretation of biological data, however theory applicable to the study of partial differential equations remains limited. We present a new approach to structural identifiability analysis of fully observed parabolic equations that are linear in their parameters. Our approach frames identifiability as an existence and uniqueness problem in a closely related elliptic equation and draws, for homogeneous equations, on the well-known Fredholm alternative to establish unconditional identifiability, and cases where specific choices of initial and boundary conditions lead to non-identifiability. While in some sense pathological, we demonstrate that this loss of structural identifiability has ramifications for practical identifiability; important particularly for spatial problems, where the initial condition is often limited by experimental constraints. For cases with nonlinear reaction terms, uniqueness of solutions to the auxiliary elliptic equation corresponds to identifiability, often leading to unconditional global identifiability under mild assumptions. We present analysis for a suite of simple scalar models with various boundary conditions that include linear (exponential) and nonlinear (logistic) source terms, and a special case of a two-species cell motility model. We conclude by discussing how this new perspective enables well-developed analysis tools to advance the developing theory underlying structural identifiability of partial differential equations.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.