Jian Zhang, Pengfei Che, Zhuoxuan Yang, Pingrui Zhang, Yuxuan Shui, Xibin Lu, Jiuzhou Xu, Yuanchu She, Yanbo Zhang, Jun Yu, Sheng-Jian Ji
{"title":"m5C阅读器Ybx1通过促进祖细胞周期进展调节胚胎皮质神经发生。","authors":"Jian Zhang, Pengfei Che, Zhuoxuan Yang, Pingrui Zhang, Yuxuan Shui, Xibin Lu, Jiuzhou Xu, Yuanchu She, Yanbo Zhang, Jun Yu, Sheng-Jian Ji","doi":"10.1371/journal.pbio.3003175","DOIUrl":null,"url":null,"abstract":"<p><p>The reversible epitranscriptomic mark, 5-methylcytosine (m5C) modification, is implicated in numerous cellular processes, but its role in neural development remains largely unexplored. In this study, we discovered high expression of the m5C reader Ybx1 in the developing mouse cortex. To elucidate its role in cortical development, Ybx1 was ablated in embryonic cortical neural stem cells (NSCs). Interestingly, conditional knockout (cKO) of Ybx1 led to perinatal mortality in mice, along with abnormal cortical development. Cortical progenitor cells lacking Ybx1 exhibited impaired proliferation and differentiation. Multi-omics analysis identified the target mRNAs of Ybx1, which encode the key cell cycle regulatory proteins converging on cyclin D2 (Ccnd2). Ybx1 was found to regulate the stability of its target transcripts. Both knockdown and overexpression of Ybx1 targets via in utero electroporation confirmed that they mediated Ybx1 regulation of proliferation and differentiation of neural precursor cells. Further analysis showed that the G1 to S phase transition in cortical progenitor cells is delayed in the Ybx1 cKO. This study highlights the crucial function of the m5C reader protein Ybx1 in promoting cell cycle progression of the embryonic cortical progenitors, essential for proper cortical development.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 5","pages":"e3003175"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The m5C reader Ybx1 regulates embryonic cortical neurogenesis by promoting progenitor cell cycle progression.\",\"authors\":\"Jian Zhang, Pengfei Che, Zhuoxuan Yang, Pingrui Zhang, Yuxuan Shui, Xibin Lu, Jiuzhou Xu, Yuanchu She, Yanbo Zhang, Jun Yu, Sheng-Jian Ji\",\"doi\":\"10.1371/journal.pbio.3003175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reversible epitranscriptomic mark, 5-methylcytosine (m5C) modification, is implicated in numerous cellular processes, but its role in neural development remains largely unexplored. In this study, we discovered high expression of the m5C reader Ybx1 in the developing mouse cortex. To elucidate its role in cortical development, Ybx1 was ablated in embryonic cortical neural stem cells (NSCs). Interestingly, conditional knockout (cKO) of Ybx1 led to perinatal mortality in mice, along with abnormal cortical development. Cortical progenitor cells lacking Ybx1 exhibited impaired proliferation and differentiation. Multi-omics analysis identified the target mRNAs of Ybx1, which encode the key cell cycle regulatory proteins converging on cyclin D2 (Ccnd2). Ybx1 was found to regulate the stability of its target transcripts. Both knockdown and overexpression of Ybx1 targets via in utero electroporation confirmed that they mediated Ybx1 regulation of proliferation and differentiation of neural precursor cells. Further analysis showed that the G1 to S phase transition in cortical progenitor cells is delayed in the Ybx1 cKO. This study highlights the crucial function of the m5C reader protein Ybx1 in promoting cell cycle progression of the embryonic cortical progenitors, essential for proper cortical development.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 5\",\"pages\":\"e3003175\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003175\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003175","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The m5C reader Ybx1 regulates embryonic cortical neurogenesis by promoting progenitor cell cycle progression.
The reversible epitranscriptomic mark, 5-methylcytosine (m5C) modification, is implicated in numerous cellular processes, but its role in neural development remains largely unexplored. In this study, we discovered high expression of the m5C reader Ybx1 in the developing mouse cortex. To elucidate its role in cortical development, Ybx1 was ablated in embryonic cortical neural stem cells (NSCs). Interestingly, conditional knockout (cKO) of Ybx1 led to perinatal mortality in mice, along with abnormal cortical development. Cortical progenitor cells lacking Ybx1 exhibited impaired proliferation and differentiation. Multi-omics analysis identified the target mRNAs of Ybx1, which encode the key cell cycle regulatory proteins converging on cyclin D2 (Ccnd2). Ybx1 was found to regulate the stability of its target transcripts. Both knockdown and overexpression of Ybx1 targets via in utero electroporation confirmed that they mediated Ybx1 regulation of proliferation and differentiation of neural precursor cells. Further analysis showed that the G1 to S phase transition in cortical progenitor cells is delayed in the Ybx1 cKO. This study highlights the crucial function of the m5C reader protein Ybx1 in promoting cell cycle progression of the embryonic cortical progenitors, essential for proper cortical development.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.