使用deepKin精确估计生物库规模数据集的深度相关性。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-06-16 Epub Date: 2025-05-27 DOI:10.1016/j.crmeth.2025.101053
Qi-Xin Zhang, Dovini Jayasinghe, Zhe Zhang, Sang Hong Lee, Hai-Ming Xu, Guo-Bo Chen
{"title":"使用deepKin精确估计生物库规模数据集的深度相关性。","authors":"Qi-Xin Zhang, Dovini Jayasinghe, Zhe Zhang, Sang Hong Lee, Hai-Ming Xu, Guo-Bo Chen","doi":"10.1016/j.crmeth.2025.101053","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate relatedness estimation is essential in biobank-scale genetic studies. We present deepKin, a method-of-moments framework that accounts for sampling variance to enable statistical inference and classification of relatedness. Unlike traditional methods using fixed thresholds, deepKin computes data-specific significance thresholds, determines the minimum effective number of markers, and estimates the statistical power to detect distant relatives. Through simulations, we demonstrate that deepKin accurately infers both unrelated pairs and relatives by leveraging sampling variance. In the UK Biobank (UKB), analysis of the 3K Oxford subset showed that SNP sets with a larger effective number of markers provided greater power for detecting distant relatives. In the White British subset, deepKin identified over 212,000 significant relative pairs, categorized into six degrees, and revealed their geographic patterns across 19 UKB assessment centers through within-cohort and cross-cohort relatedness estimation. An R package (deepKin) is available at GitHub.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101053"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise estimation of in-depth relatedness in biobank-scale datasets using deepKin.\",\"authors\":\"Qi-Xin Zhang, Dovini Jayasinghe, Zhe Zhang, Sang Hong Lee, Hai-Ming Xu, Guo-Bo Chen\",\"doi\":\"10.1016/j.crmeth.2025.101053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate relatedness estimation is essential in biobank-scale genetic studies. We present deepKin, a method-of-moments framework that accounts for sampling variance to enable statistical inference and classification of relatedness. Unlike traditional methods using fixed thresholds, deepKin computes data-specific significance thresholds, determines the minimum effective number of markers, and estimates the statistical power to detect distant relatives. Through simulations, we demonstrate that deepKin accurately infers both unrelated pairs and relatives by leveraging sampling variance. In the UK Biobank (UKB), analysis of the 3K Oxford subset showed that SNP sets with a larger effective number of markers provided greater power for detecting distant relatives. In the White British subset, deepKin identified over 212,000 significant relative pairs, categorized into six degrees, and revealed their geographic patterns across 19 UKB assessment centers through within-cohort and cross-cohort relatedness estimation. An R package (deepKin) is available at GitHub.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101053\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

准确的亲缘关系估计在生物库规模的遗传研究中是必不可少的。我们提出了deepKin,这是一种矩量法框架,它考虑了采样方差,从而实现了相关性的统计推断和分类。与使用固定阈值的传统方法不同,deepKin计算特定数据的显著性阈值,确定标记的最小有效数量,并估计检测远亲的统计能力。通过模拟,我们证明了deepKin通过利用采样方差准确地推断出不相关对和亲属。在UK Biobank (UKB)中,对3K Oxford子集的分析表明,具有更大有效数量标记的SNP集为检测远亲提供了更大的能力。在英国白人子集中,deepKin确定了超过212,000个重要的亲属对,分为6个度,并通过队列内和跨队列相关性估计揭示了19个UKB评估中心的地理模式。一个R包(deepKin)可以在GitHub上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise estimation of in-depth relatedness in biobank-scale datasets using deepKin.

Accurate relatedness estimation is essential in biobank-scale genetic studies. We present deepKin, a method-of-moments framework that accounts for sampling variance to enable statistical inference and classification of relatedness. Unlike traditional methods using fixed thresholds, deepKin computes data-specific significance thresholds, determines the minimum effective number of markers, and estimates the statistical power to detect distant relatives. Through simulations, we demonstrate that deepKin accurately infers both unrelated pairs and relatives by leveraging sampling variance. In the UK Biobank (UKB), analysis of the 3K Oxford subset showed that SNP sets with a larger effective number of markers provided greater power for detecting distant relatives. In the White British subset, deepKin identified over 212,000 significant relative pairs, categorized into six degrees, and revealed their geographic patterns across 19 UKB assessment centers through within-cohort and cross-cohort relatedness estimation. An R package (deepKin) is available at GitHub.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信