预测约40,000个小型化反应物组合的三组分反应结果。

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Julian Götz, Euan Richards, Iain A. Stepek, Yu Takahashi, Yi-Lin Huang, Louis Bertschi, Bertran Rubi, Jeffrey W. Bode
{"title":"预测约40,000个小型化反应物组合的三组分反应结果。","authors":"Julian Götz,&nbsp;Euan Richards,&nbsp;Iain A. Stepek,&nbsp;Yu Takahashi,&nbsp;Yi-Lin Huang,&nbsp;Louis Bertschi,&nbsp;Bertran Rubi,&nbsp;Jeffrey W. Bode","doi":"10.1126/sciadv.adw6047","DOIUrl":null,"url":null,"abstract":"<div >Efficient drug discovery depends on reliable synthetic access to candidate molecules, but emerging machine learning approaches to predicting reaction outcomes are hampered by poor availability of high-quality data. Here, we demonstrate an on-demand synthesis platform based on a three-component reaction that delivers drug-like molecules. Miniaturization and automation enable the execution and analysis of 50,000 distinct reactions on a 3-microliter scale from 193 different substrates, producing the largest public reaction outcome dataset. With machine learning, we accurately predict the result of unknown reactions and analyze the impact of dataset size on model training, both enabling accurate outcome predictions even for unseen reactants and providing a sufficiently large dataset to critically evaluate emerging machine learning approaches to chemical reactivity.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 22","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw6047","citationCount":"0","resultStr":"{\"title\":\"Predicting three-component reaction outcomes from ~40,000 miniaturized reactant combinations\",\"authors\":\"Julian Götz,&nbsp;Euan Richards,&nbsp;Iain A. Stepek,&nbsp;Yu Takahashi,&nbsp;Yi-Lin Huang,&nbsp;Louis Bertschi,&nbsp;Bertran Rubi,&nbsp;Jeffrey W. Bode\",\"doi\":\"10.1126/sciadv.adw6047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Efficient drug discovery depends on reliable synthetic access to candidate molecules, but emerging machine learning approaches to predicting reaction outcomes are hampered by poor availability of high-quality data. Here, we demonstrate an on-demand synthesis platform based on a three-component reaction that delivers drug-like molecules. Miniaturization and automation enable the execution and analysis of 50,000 distinct reactions on a 3-microliter scale from 193 different substrates, producing the largest public reaction outcome dataset. With machine learning, we accurately predict the result of unknown reactions and analyze the impact of dataset size on model training, both enabling accurate outcome predictions even for unseen reactants and providing a sufficiently large dataset to critically evaluate emerging machine learning approaches to chemical reactivity.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 22\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw6047\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw6047\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw6047","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有效的药物发现依赖于对候选分子的可靠合成途径,但预测反应结果的新兴机器学习方法受到高质量数据可用性不足的阻碍。在这里,我们展示了一个基于三组分反应的按需合成平台,该平台可提供类药物分子。小型化和自动化能够在3微升的尺度上从193种不同的底物中执行和分析50,000种不同的反应,产生最大的公共反应结果数据集。通过机器学习,我们可以准确地预测未知反应的结果,并分析数据集大小对模型训练的影响,既可以对看不见的反应物进行准确的结果预测,也可以提供足够大的数据集来批判性地评估新兴的化学反应性机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting three-component reaction outcomes from ~40,000 miniaturized reactant combinations

Predicting three-component reaction outcomes from ~40,000 miniaturized reactant combinations
Efficient drug discovery depends on reliable synthetic access to candidate molecules, but emerging machine learning approaches to predicting reaction outcomes are hampered by poor availability of high-quality data. Here, we demonstrate an on-demand synthesis platform based on a three-component reaction that delivers drug-like molecules. Miniaturization and automation enable the execution and analysis of 50,000 distinct reactions on a 3-microliter scale from 193 different substrates, producing the largest public reaction outcome dataset. With machine learning, we accurately predict the result of unknown reactions and analyze the impact of dataset size on model training, both enabling accurate outcome predictions even for unseen reactants and providing a sufficiently large dataset to critically evaluate emerging machine learning approaches to chemical reactivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信