{"title":"癌症风险与囊性纤维化之间的关系:CFTR在细胞生长和癌症发展中的作用。","authors":"Radek Indra, Věra Černá","doi":"10.1039/d5md00203f","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is a life-limiting genetic disease that affects multiple organ systems. It is caused by a mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which results in the absence or damage of a relevant protein. If left untreated, it causes death in early childhood. The advent of more efficacious treatments has resulted in a notable increase in the life expectancy of CF patients. This has, in turn, led to an elevated risk of developing specific types of cancer. This review commences with an examination of CF from the standpoint of its etiology and therapeutic modalities. Subsequently, it presents a list of epidemiological studies that suggest an altered predisposition to certain cancers. A heightened risk is well documented, particularly in relation to the gastrointestinal tract. The following section addresses the role of CFTR in view of its potential involvement in the progression of various types of cancer. Several studies have indicated that the levels of the CFTR protein are reduced in many tumors and that this reduction is associated with the progression of the tumors. These decreased expressions are known to occur in the gastrointestinal tract, lungs, bladder, and/or prostate cancer. Conversely, ovarian, stomach, and cervical cancer are connected with its higher expression. The final section of the review focuses on the molecular mechanism of action of the CFTR protein in signaling pathways that affect cell proliferation and the process of carcinogenesis. This section attempts to explain the increased predisposition to cancer observed in patients with CF.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107394/pdf/","citationCount":"0","resultStr":"{\"title\":\"The relationship between cancer risk and cystic fibrosis: the role of CFTR in cell growth and cancer development.\",\"authors\":\"Radek Indra, Věra Černá\",\"doi\":\"10.1039/d5md00203f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cystic fibrosis (CF) is a life-limiting genetic disease that affects multiple organ systems. It is caused by a mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which results in the absence or damage of a relevant protein. If left untreated, it causes death in early childhood. The advent of more efficacious treatments has resulted in a notable increase in the life expectancy of CF patients. This has, in turn, led to an elevated risk of developing specific types of cancer. This review commences with an examination of CF from the standpoint of its etiology and therapeutic modalities. Subsequently, it presents a list of epidemiological studies that suggest an altered predisposition to certain cancers. A heightened risk is well documented, particularly in relation to the gastrointestinal tract. The following section addresses the role of CFTR in view of its potential involvement in the progression of various types of cancer. Several studies have indicated that the levels of the CFTR protein are reduced in many tumors and that this reduction is associated with the progression of the tumors. These decreased expressions are known to occur in the gastrointestinal tract, lungs, bladder, and/or prostate cancer. Conversely, ovarian, stomach, and cervical cancer are connected with its higher expression. The final section of the review focuses on the molecular mechanism of action of the CFTR protein in signaling pathways that affect cell proliferation and the process of carcinogenesis. This section attempts to explain the increased predisposition to cancer observed in patients with CF.</p>\",\"PeriodicalId\":21462,\"journal\":{\"name\":\"RSC medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12107394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1039/d5md00203f\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d5md00203f","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The relationship between cancer risk and cystic fibrosis: the role of CFTR in cell growth and cancer development.
Cystic fibrosis (CF) is a life-limiting genetic disease that affects multiple organ systems. It is caused by a mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which results in the absence or damage of a relevant protein. If left untreated, it causes death in early childhood. The advent of more efficacious treatments has resulted in a notable increase in the life expectancy of CF patients. This has, in turn, led to an elevated risk of developing specific types of cancer. This review commences with an examination of CF from the standpoint of its etiology and therapeutic modalities. Subsequently, it presents a list of epidemiological studies that suggest an altered predisposition to certain cancers. A heightened risk is well documented, particularly in relation to the gastrointestinal tract. The following section addresses the role of CFTR in view of its potential involvement in the progression of various types of cancer. Several studies have indicated that the levels of the CFTR protein are reduced in many tumors and that this reduction is associated with the progression of the tumors. These decreased expressions are known to occur in the gastrointestinal tract, lungs, bladder, and/or prostate cancer. Conversely, ovarian, stomach, and cervical cancer are connected with its higher expression. The final section of the review focuses on the molecular mechanism of action of the CFTR protein in signaling pathways that affect cell proliferation and the process of carcinogenesis. This section attempts to explain the increased predisposition to cancer observed in patients with CF.